blob: 7d07ccccb5887ac0f772a4125d79a894d63af843 [file] [log] [blame]
#include <catch.hpp>
#include <torch/nn/modules.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/sequential.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <memory>
#include <vector>
#include <test/cpp/api/util.h>
using namespace torch::nn;
using namespace torch::test;
using Catch::StartsWith;
TEST_CASE("sequential") {
SECTION("construction from shared pointer") {
struct M : torch::nn::Module {
explicit M(int value_) : value(value_) {}
int value;
int forward() {
return value;
}
};
Sequential sequential(
std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3));
REQUIRE(sequential->size() == 3);
}
SECTION("construction from concrete type") {
struct M : torch::nn::Module {
explicit M(int value_) : value(value_) {}
int value;
int forward() {
return value;
}
};
Sequential sequential(M(1), M(2), M(3));
REQUIRE(sequential->size() == 3);
}
SECTION("construction from module holders") {
struct MImpl : torch::nn::Module {
explicit MImpl(int value_) : value(value_) {}
int forward() {
return value;
}
int value;
};
struct M : torch::nn::ModuleHolder<MImpl> {
using torch::nn::ModuleHolder<MImpl>::ModuleHolder;
using torch::nn::ModuleHolder<MImpl>::get;
};
Sequential sequential(M(1), M(2), M(3));
REQUIRE(sequential->size() == 3);
}
SECTION("push_back") {
struct M : torch::nn::Module {
explicit M(int value_) : value(value_) {}
int forward() {
return value;
}
int value;
};
Sequential sequential;
REQUIRE(sequential->size() == 0);
REQUIRE(sequential->is_empty());
sequential->push_back(Linear(3, 4));
REQUIRE(sequential->size() == 1);
sequential->push_back(std::make_shared<M>(1));
REQUIRE(sequential->size() == 2);
sequential->push_back(M(2));
REQUIRE(sequential->size() == 3);
}
SECTION("access") {
struct M : torch::nn::Module {
explicit M(int value_) : value(value_) {}
int forward() {
return value;
}
int value;
};
std::vector<std::shared_ptr<M>> modules = {
std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)};
Sequential sequential;
for (auto& module : modules) {
sequential->push_back(module);
}
REQUIRE(sequential->size() == 3);
SECTION("at()") {
SECTION("returns the correct module for a given index") {
for (size_t i = 0; i < modules.size(); ++i) {
REQUIRE(&sequential->at<M>(i) == modules[i].get());
}
}
SECTION("throws for a bad index") {
REQUIRE_THROWS_WITH(
sequential->at<M>(modules.size() + 1),
StartsWith("Index out of range"));
REQUIRE_THROWS_WITH(
sequential->at<M>(modules.size() + 1000000),
StartsWith("Index out of range"));
}
}
SECTION("ptr()") {
SECTION("returns the correct module for a given index") {
for (size_t i = 0; i < modules.size(); ++i) {
REQUIRE(sequential->ptr(i).get() == modules[i].get());
REQUIRE(sequential[i].get() == modules[i].get());
REQUIRE(sequential->ptr<M>(i).get() == modules[i].get());
}
}
SECTION("throws for a bad index") {
REQUIRE_THROWS_WITH(
sequential->ptr(modules.size() + 1),
StartsWith("Index out of range"));
REQUIRE_THROWS_WITH(
sequential->ptr(modules.size() + 1000000),
StartsWith("Index out of range"));
}
}
}
SECTION("forward") {
SECTION("calling forward() on an empty sequential is disallowed") {
Sequential empty;
REQUIRE_THROWS_WITH(
empty->forward<int>(),
StartsWith("Cannot call forward() on an empty Sequential"));
}
SECTION("calling forward() on a non-empty sequential chains correctly") {
struct MockModule : torch::nn::Module {
explicit MockModule(int value) : expected(value) {}
int expected;
int forward(int value) {
REQUIRE(value == expected);
return value + 1;
}
};
Sequential sequential(MockModule{1}, MockModule{2}, MockModule{3});
REQUIRE(sequential->forward<int>(1) == 4);
}
SECTION("calling forward() with the wrong return type throws") {
struct M : public torch::nn::Module {
int forward() {
return 5;
}
};
Sequential sequential(M{});
REQUIRE(sequential->forward<int>() == 5);
REQUIRE_THROWS_WITH(
sequential->forward<float>(),
StartsWith("The type of the return value "
"is int, but you asked for type float"));
}
SECTION("The return type of forward() defaults to Tensor") {
struct M : public torch::nn::Module {
torch::Tensor forward(torch::Tensor v) {
return v;
}
};
Sequential sequential(M{});
auto variable = torch::ones({3, 3}, torch::requires_grad());
REQUIRE(sequential->forward(variable).equal(variable));
}
}
SECTION("returns the last value") {
torch::manual_seed(0);
Sequential sequential(Linear(10, 3), Linear(3, 5), Linear(5, 100));
auto x = torch::randn({1000, 10}, torch::requires_grad());
auto y = sequential->forward(x);
REQUIRE(y.ndimension() == 2);
REQUIRE(y.size(0) == 1000);
REQUIRE(y.size(1) == 100);
}
SECTION("can hold other important modules") {
Sequential sequential(
Linear(10, 3),
Conv2d(1, 2, 3),
Dropout(0.5),
BatchNorm(5),
Embedding(4, 10),
LSTM(4, 5));
}
SECTION("converts at::Tensor to torch::Tensor correctly") {
struct M : torch::nn::Module {
torch::Tensor forward(torch::Tensor input) {
return input;
}
};
Sequential sequential(M{});
torch::Tensor variable = torch::ones(5);
REQUIRE(sequential->forward(variable).sum().toCFloat() == 5);
at::Tensor tensor_that_is_actually_a_variable = variable * 2;
REQUIRE(
sequential->forward(tensor_that_is_actually_a_variable)
.sum()
.toCFloat() == 10);
}
SECTION("extend() pushes modules from other Sequential") {
struct A : torch::nn::Module {
int forward(int x) {
return x;
}
};
struct B : torch::nn::Module {
int forward(int x) {
return x;
}
};
struct C : torch::nn::Module {
int forward(int x) {
return x;
}
};
struct D : torch::nn::Module {
int forward(int x) {
return x;
}
};
Sequential a(A{}, B{});
Sequential b(C{}, D{});
a->extend(*b);
REQUIRE(a->size() == 4);
REQUIRE(a[0]->as<A>());
REQUIRE(a[1]->as<B>());
REQUIRE(a[2]->as<C>());
REQUIRE(a[3]->as<D>());
REQUIRE(b->size() == 2);
REQUIRE(b[0]->as<C>());
REQUIRE(b[1]->as<D>());
std::vector<std::shared_ptr<A>> c = {std::make_shared<A>(),
std::make_shared<A>()};
b->extend(c);
REQUIRE(b->size() == 4);
REQUIRE(b[0]->as<C>());
REQUIRE(b[1]->as<D>());
REQUIRE(b[2]->as<A>());
REQUIRE(b[3]->as<A>());
}
SECTION("has reference semantics") {
Sequential first(Linear(2, 3), Linear(4, 4), Linear(4, 5));
Sequential second(first);
REQUIRE(first.get() == second.get());
REQUIRE(first->size() == second->size());
REQUIRE(std::equal(
first->begin(),
first->end(),
second->begin(),
[](const AnyModule& first, const AnyModule& second) {
return &first == &second;
}));
}
SECTION("Is cloneable") {
Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3));
Sequential clone =
std::dynamic_pointer_cast<SequentialImpl>(sequential->clone());
REQUIRE(sequential->size() == clone->size());
for (size_t i = 0; i < sequential->size(); ++i) {
// The modules should be the same kind (type).
REQUIRE(sequential[i]->name() == clone[i]->name());
// But not pointer-equal (distinct objects).
REQUIRE(sequential[i] != clone[i]);
}
// Verify that the clone is deep, i.e. parameters of modules are cloned too.
auto params1 = sequential->parameters();
auto params2 = clone->parameters();
REQUIRE(params1.size() == params2.size());
for (auto& param : params1) {
REQUIRE(!pointer_equal(param.value, params2[param.key]));
REQUIRE(param->device() == params2[param.key].device());
REQUIRE(param->allclose(params2[param.key]));
param->data().add_(2);
}
for (auto& param : params1) {
REQUIRE(!param->allclose(params2[param.key]));
}
}
}
TEST_CASE("sequential/clone-to-device", "[cuda]") {
Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3));
torch::Device device(torch::kCUDA, 0);
Sequential clone =
std::dynamic_pointer_cast<SequentialImpl>(sequential->clone(device));
for (const auto& p : clone->parameters()) {
REQUIRE(p->device() == device);
}
for (const auto& b : clone->buffers()) {
REQUIRE(b->device() == device);
}
}