| import torch._C as _C |
| |
| TensorProtoDataType = _C._onnx.TensorProtoDataType |
| OperatorExportTypes = _C._onnx.OperatorExportTypes |
| PYTORCH_ONNX_CAFFE2_BUNDLE = _C._onnx.PYTORCH_ONNX_CAFFE2_BUNDLE |
| |
| ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO" |
| |
| |
| class ExportTypes: |
| PROTOBUF_FILE = 1 |
| ZIP_ARCHIVE = 2 |
| COMPRESSED_ZIP_ARCHIVE = 3 |
| DIRECTORY = 4 |
| |
| |
| def _export(*args, **kwargs): |
| from torch.onnx import utils |
| result = utils._export(*args, **kwargs) |
| return result |
| |
| |
| def export(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.export(*args, **kwargs) |
| |
| |
| def export_to_pretty_string(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.export_to_pretty_string(*args, **kwargs) |
| |
| |
| def _export_to_pretty_string(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._export_to_pretty_string(*args, **kwargs) |
| |
| |
| def _optimize_trace(trace, operator_export_type): |
| from torch.onnx import utils |
| trace.set_graph(utils._optimize_graph(trace.graph(), operator_export_type)) |
| |
| |
| def set_training(*args, **kwargs): |
| from torch.onnx import utils |
| return utils.set_training(*args, **kwargs) |
| |
| |
| def _run_symbolic_function(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_function(*args, **kwargs) |
| |
| |
| def _run_symbolic_method(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_method(*args, **kwargs) |
| |
| |
| def is_in_onnx_export(): |
| from torch.onnx import utils |
| return utils.is_in_onnx_export() |