blob: 39a30d5da5319534224160f78aa54d26d851e8bb [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package fc
# Module caffe2.python.layers.fc
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
import math
import numpy as np
class FC(SamplingTrainableMixin, ModelLayer):
def __init__(self, model, input_record, output_dims, weight_init=None,
bias_init=None, weight_optim=None, bias_optim=None, name='fc',
**kwargs):
super(FC, self).__init__(model, name, input_record, **kwargs)
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
assert len(input_record.field_types()[0].shape) > 0, (
"FC expects limited dimensions of the input tensor")
input_dims = input_record.field_types()[0].shape[0]
assert input_dims > 0, (
"FC expects input dimensions > 0, got {}".format(input_dims))
scale = math.sqrt(1.0 / input_dims)
weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
bias_init = bias_init if bias_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = self.create_param(param_name='w',
shape=[output_dims, input_dims],
initializer=weight_init,
optimizer=weight_optim)
self.b = self.create_param(param_name='b',
shape=[output_dims, ],
initializer=bias_init,
optimizer=bias_optim)
self.output_schema = schema.Scalar(
(np.float32, (output_dims, )),
self.get_next_blob_reference('output')
)
def _add_ops(self, net, params):
net.FC(self.input_record.field_blobs() + params,
self.output_schema.field_blobs(), **self.kwargs)
@property
def param_blobs(self):
return [self.w, self.b]