blob: bc3ba33d233754f47274782d58ebdbbd65b2bcda [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package concat
# Module caffe2.python.layers.concat
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
)
from future.utils import viewitems
import numpy as np
class Concat(ModelLayer):
def __init__(self, model, input_record, axis=1, add_axis=0,
name='concat', **kwargs):
super(Concat, self).__init__(model, name, input_record, **kwargs)
self.axis = axis
self.add_axis = add_axis
assert not (axis == 0 and add_axis == 1), \
"It's not allowed to add axis=0"
assert isinstance(input_record, schema.Struct),\
"Incorrect input type. Excpected Struct, but received: {0}".\
format(input_record)
shapes = []
for field_name, field_type in viewitems(input_record.fields):
assert isinstance(field_type, schema.Scalar),\
"Incorrect input type for {}. Excpected Scalar, but got: {}".\
format(field_name, field_type)
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
assert len(field_type.field_type().shape) >= axis,\
"Concat expects that limited dimensions of the input tensor"
shapes.append(list(field_type.field_type().shape))
if add_axis:
for i in range(len(shapes)):
shapes[i].insert(axis, 1)
if axis == 0:
self.output_schema = schema.from_blob_list(
input_record[0],
[self.get_next_blob_reference('output')]
)
return
concat_dim = 0
for shape in shapes:
concat_dim += shape[axis - 1]
shape[axis - 1] = 0
assert shape == shapes[0],\
"Shapes {0} and {1} are not compatible for Concat".\
format(shape, shapes[0])
output_dims = shapes[0]
output_dims[axis - 1] = concat_dim
self.output_schema = schema.Scalar(
(np.float32, output_dims),
self.get_next_blob_reference('output'))
def add_ops(self, net):
net.Concat(
self.input_record.field_blobs(),
[
self.output_schema.field_blobs()[0],
self.output_schema.field_blobs()[0] + "_concat_dims"
],
axis=self.axis,
add_axis=self.add_axis,
)