| # Copyright (c) 2016-present, Facebook, Inc. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ############################################################################## |
| |
| ## @package batch_mse_loss |
| # Module caffe2.python.layers.batch_mse_loss |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| from caffe2.python.layers.tags import ( |
| Tags |
| ) |
| import numpy as np |
| |
| |
| class BatchMSELoss(ModelLayer): |
| |
| def __init__(self, model, input_record, name='batch_mse_loss', **kwargs): |
| super(BatchMSELoss, self).__init__(model, name, input_record, **kwargs) |
| |
| assert schema.is_schema_subset( |
| schema.Struct( |
| ('label', schema.Scalar()), |
| ('prediction', schema.Scalar()) |
| ), |
| input_record |
| ) |
| self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) |
| |
| self.output_schema = schema.Scalar( |
| np.float32, |
| self.get_next_blob_reference('output')) |
| |
| def add_ops(self, net): |
| prediction = net.Squeeze( |
| self.input_record.prediction(), |
| net.NextScopedBlob('squeezed_prediction'), |
| dims=[1] |
| ) |
| |
| label = self.input_record.label.field_blobs() |
| if self.input_record.label.field_type().base != ( |
| self.input_record.prediction.field_type().base): |
| |
| label = net.Cast( |
| label, |
| net.NextScopedBlob('cast_label'), |
| to=schema.data_type_for_dtype( |
| self.input_record.prediction.field_type() |
| ) |
| ) |
| |
| label = net.StopGradient( |
| label, |
| net.NextScopedBlob('stopped_label') |
| ) |
| |
| l2dist = net.SquaredL2Distance( |
| [label, prediction], |
| net.NextScopedBlob('l2') |
| ) |
| |
| net.AveragedLoss(l2dist, self.output_schema.field_blobs()) |