| import io |
| |
| import torch |
| from ._utils import _type, _cuda |
| from torch.types import Storage |
| from typing import Any, TypeVar, Type, Union, cast |
| import copy |
| import collections |
| from functools import lru_cache |
| |
| T = TypeVar('T', bound='Union[_StorageBase, TypedStorage]') |
| class _StorageBase(object): |
| _cdata: Any |
| is_cuda: bool = False |
| is_sparse: bool = False |
| device: torch.device |
| |
| def __init__(self, *args, **kwargs): ... # noqa: E704 |
| def __len__(self) -> int: ... # noqa: E704 |
| def __getitem__(self, idx): ... # noqa: E704 |
| def copy_(self, source: T) -> T: ... # noqa: E704 |
| def nbytes(self) -> int: ... # noqa: E704 |
| |
| def size(self) -> int: |
| return self.nbytes() |
| |
| def type(self, dtype: str = None, non_blocking: bool = False) -> T: ... # noqa: E704 |
| def cuda(self, device=None, non_blocking=False, **kwargs) -> T: ... # noqa: E704 |
| def element_size(self) -> int: ... # noqa: E704 |
| def get_device(self) -> int: ... # noqa: E704 |
| def data_ptr(self) -> int: ... # noqa: E704 |
| |
| # Defined in torch/csrc/generic/StorageSharing.cpp |
| def _share_filename_(self): ... # noqa: E704 |
| def _share_fd_(self): ... # noqa: E704 |
| @classmethod |
| def _new_using_filename(cls: Type[T], size: int) -> T: ... # noqa: E704 |
| @classmethod |
| def _new_using_fd(cls: Type[T], size: int) -> T: ... # noqa: E704 |
| |
| def __str__(self): |
| content = ' ' + '\n '.join(str(self[i]) for i in range(len(self))) |
| return content + f'\n[{torch.typename(self)} of size {len(self)}]' |
| |
| def __repr__(self): |
| return str(self) |
| |
| def __iter__(self): |
| return iter(map(lambda i: self[i], range(self.size()))) |
| |
| def __copy__(self): |
| return self.clone() |
| |
| def __deepcopy__(self, memo): |
| memo = memo.setdefault('torch', {}) |
| if self._cdata in memo: |
| return memo[self._cdata] |
| new_storage = self.clone() |
| memo[self._cdata] = new_storage |
| return new_storage |
| |
| def __reduce__(self): |
| b = io.BytesIO() |
| torch.save(self, b, _use_new_zipfile_serialization=False) |
| return (_load_from_bytes, (b.getvalue(),)) |
| |
| def __sizeof__(self): |
| return super(_StorageBase, self).__sizeof__() + self.size() |
| |
| def clone(self): |
| """Returns a copy of this storage""" |
| device = self.get_device() if self.is_cuda else -1 |
| with torch.cuda.device(device): |
| return type(self)(self.nbytes()).copy_(self) |
| |
| def tolist(self): |
| """Returns a list containing the elements of this storage""" |
| return list(self) |
| |
| def cpu(self): |
| """Returns a CPU copy of this storage if it's not already on the CPU""" |
| return _type(self, getattr(torch, self.__class__.__name__)) |
| |
| def _to(self, dtype): |
| storage = torch.tensor([], dtype=torch.uint8, device=self.device).set_(cast(Storage, self)).to(dtype).storage() |
| if storage.data_ptr() == self.data_ptr(): |
| storage = storage.clone() |
| return storage |
| |
| def double(self): |
| """Casts this storage to double type""" |
| return self._to(torch.double) |
| |
| def float(self): |
| """Casts this storage to float type""" |
| return self._to(torch.float) |
| |
| def half(self): |
| """Casts this storage to half type""" |
| return self._to(torch.half) |
| |
| def long(self): |
| """Casts this storage to long type""" |
| return self._to(torch.long) |
| |
| def int(self): |
| """Casts this storage to int type""" |
| return self._to(torch.int) |
| |
| def short(self): |
| """Casts this storage to short type""" |
| return self._to(torch.short) |
| |
| def char(self): |
| """Casts this storage to char type""" |
| return self._to(torch.int8) |
| |
| def byte(self): |
| """Casts this storage to byte type""" |
| return self._to(torch.uint8) |
| |
| def bool(self): |
| """Casts this storage to bool type""" |
| return self._to(torch.bool) |
| |
| def bfloat16(self): |
| """Casts this storage to bfloat16 type""" |
| return self._to(torch.bfloat16) |
| |
| def complex_double(self): |
| """Casts this storage to complex double type""" |
| return self._to(torch.cdouble) |
| |
| def complex_float(self): |
| """Casts this storage to complex float type""" |
| return self._to(torch.cfloat) |
| |
| def pin_memory(self): |
| """Copies the storage to pinned memory, if it's not already pinned.""" |
| if self.is_cuda: |
| raise TypeError(f"cannot pin '{self.type()}' only CPU memory can be pinned") |
| import torch.cuda |
| allocator = torch.cuda._host_allocator() # type: ignore[attr-defined] |
| return type(self)(self.size(), allocator=allocator).copy_(self) |
| |
| def share_memory_(self): |
| """Moves the storage to shared memory. |
| |
| This is a no-op for storages already in shared memory and for CUDA |
| storages, which do not need to be moved for sharing across processes. |
| Storages in shared memory cannot be resized. |
| |
| Returns: self |
| """ |
| from torch.multiprocessing import get_sharing_strategy |
| if self.is_cuda: |
| pass # CUDA doesn't use POSIX shared memory |
| elif get_sharing_strategy() == 'file_system': |
| self._share_filename_() |
| else: |
| self._share_fd_() |
| return self |
| |
| @classmethod |
| def _new_shared(cls, size): |
| """Creates a new storage in shared memory with the same data type""" |
| from torch.multiprocessing import get_sharing_strategy |
| if cls.is_cuda: |
| return cls(size) |
| elif get_sharing_strategy() == 'file_system': |
| return cls._new_using_filename(size) |
| else: |
| return cls._new_using_fd(size) |
| |
| def _untyped(self): |
| return self |
| |
| |
| def _load_from_bytes(b): |
| return torch.load(io.BytesIO(b)) |
| |
| |
| _StorageBase.type = _type # type: ignore[assignment] |
| _StorageBase.cuda = _cuda # type: ignore[assignment] |
| |
| |
| @lru_cache(maxsize=None) |
| def _dtype_to_storage_type_map(): |
| return { |
| torch.double: 'DoubleStorage', |
| torch.float: 'FloatStorage', |
| torch.half: 'HalfStorage', |
| torch.long: 'LongStorage', |
| torch.int: 'IntStorage', |
| torch.int16: 'ShortStorage', |
| torch.int8: 'CharStorage', |
| torch.uint8: 'ByteStorage', |
| torch.bool: 'BoolStorage', |
| torch.bfloat16: 'BFloat16Storage', |
| torch.cdouble: 'ComplexDoubleStorage', |
| torch.cfloat: 'ComplexFloatStorage', |
| torch.qint8: 'QInt8Storage', |
| torch.qint32: 'QInt32Storage', |
| torch.quint8: 'QUInt8Storage', |
| torch.quint4x2: 'QUInt4x2Storage', |
| torch.quint2x4: 'QUInt2x4Storage', |
| } |
| |
| @lru_cache(maxsize=None) |
| def _storage_type_to_dtype_map(): |
| dtype_map = { |
| val: key for key, val in _dtype_to_storage_type_map().items()} |
| return dtype_map |
| |
| class TypedStorage: |
| is_sparse = False |
| |
| def fill_(self, value): |
| self[0:len(self)] = value |
| return self |
| |
| def __init__(self, *args, **kwargs): |
| arg_error_msg = ( |
| f'{type(self)} constructor received an invalid combination ' |
| f'of arguments - got args={tuple(type(arg) for arg in args)}, ' |
| f'kwargs={ {key: type(val) for key, val in kwargs.items()} }, but ' |
| 'expected one of:\n' |
| ' * no arguments\n' |
| ' * (int size)\n' |
| ' * (Sequence data)\n') |
| if type(self) == TypedStorage: |
| arg_error_msg += ' * (wrap_storage=<UntypedStorage>, dtype=<torch.dtype>)' |
| else: |
| arg_error_msg += ' * (wrap_storage=<UntypedStorage>)' |
| |
| if 'wrap_storage' in kwargs: |
| assert len(args) == 0, ( |
| "No positional arguments should be given when using " |
| "'wrap_storage'") |
| |
| if type(self) == TypedStorage: |
| assert 'dtype' in kwargs, ( |
| "When using 'wrap_storage', 'dtype' also must be specified") |
| assert len(kwargs) == 2, ( |
| "Only 'wrap_storage' and 'dtype' should be given, but got: " |
| f"{kwargs}") |
| dtype = kwargs['dtype'] |
| assert isinstance(dtype, torch.dtype) |
| self.dtype = dtype |
| |
| else: |
| assert hasattr(self, 'dtype') |
| assert len(kwargs) == 1, ( |
| f"Only 'wrap_storage' should be given, but got: {kwargs.keys()}") |
| dtype = self.dtype |
| |
| storage = kwargs['wrap_storage'] |
| |
| if not isinstance(storage, (torch.UntypedStorage, torch.cuda.UntypedStorage)): |
| raise TypeError(arg_error_msg) |
| if type(self) != TypedStorage and storage.__module__ != self.__module__: |
| raise TypeError(( |
| arg_error_msg + |
| f'\n`storage` `module {storage.__module__}` does not match ' |
| f'module of {type(self)}')) |
| self._storage = storage |
| |
| else: |
| assert type(self) != TypedStorage, ( |
| "Calling __init__ this way is only supported in TypedStorage's " |
| "child classes. TypedStorage can only be directly instantiated " |
| "when kwargs 'wrap_storage' and 'dtype' are given.") |
| |
| assert len(kwargs) == 0, "invalid keyword arguments" |
| |
| def isint(x): |
| try: |
| int(x) |
| except TypeError: |
| return False |
| return True |
| |
| if len(args) == 0: |
| self._storage = eval(self.__module__).UntypedStorage() |
| |
| elif len(args) == 1 and isint(args[0]): |
| self._storage = eval(self.__module__).UntypedStorage(int(args[0]) * self.element_size()) |
| |
| elif len(args) == 1 and isinstance(args[0], collections.abc.Sequence): |
| if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: |
| interpret_dtypes = { |
| torch.quint8: torch.uint8, |
| torch.quint4x2: torch.uint8, |
| torch.quint2x4: torch.uint8, |
| torch.qint32: torch.int32, |
| torch.qint8: torch.int8 |
| } |
| tmp_tensor = torch.tensor( |
| args[0], |
| dtype=interpret_dtypes[self.dtype], |
| device='cuda' if eval(self.__module__) is torch.cuda else 'cpu') |
| |
| else: |
| tmp_tensor = torch.tensor( |
| args[0], |
| dtype=self.dtype, |
| device='cuda' if eval(self.__module__) is torch.cuda else 'cpu') |
| |
| self._storage = tmp_tensor.storage()._untyped() |
| |
| else: |
| raise TypeError(arg_error_msg) |
| |
| @property |
| def is_cuda(self): |
| return self._storage.device.type == 'cuda' |
| |
| def _untyped(self): |
| return self._storage |
| |
| def _new_wrapped_storage(self, untyped_storage): |
| module = eval(untyped_storage.__module__) |
| assert type(untyped_storage) == module.UntypedStorage |
| |
| if type(self) == TypedStorage: |
| return TypedStorage(wrap_storage=untyped_storage, dtype=self.dtype) |
| else: |
| # NOTE: We need to use the module of untyped_storage in case self's |
| # module is different, e.g. if self is on CPU and untyped_storage |
| # is on CUDA, and vice versa |
| return getattr(module, type(self).__name__)(wrap_storage=untyped_storage) |
| |
| def __len__(self): |
| return self._storage.nbytes() // self.element_size() |
| |
| def _maybe_wrap_index(self, idx, is_stop=False): |
| if idx is None: |
| if is_stop: |
| return self.size() |
| else: |
| return 0 |
| |
| else: |
| if type(idx) != int: |
| raise TypeError( |
| f"can't index a {type(self)} with {type(idx)}") |
| if is_stop: |
| if (idx > self.size()) or (idx < -self.size()): |
| raise IndexError( |
| f'index {idx} out of range for storage of size {self.size()}') |
| if idx > 0: |
| return idx |
| else: |
| return idx % self.size() |
| else: |
| if (idx >= self.size()) or (idx < -self.size()): |
| raise IndexError( |
| f'index {idx} out of range for storage of size {self.size()}') |
| return idx % self.size() |
| |
| def __setitem__(self, idx, value): |
| if not isinstance(idx, (int, slice)): |
| raise RuntimeError(f"can't index a {type(self)} with {type(idx)}") |
| if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: |
| interpret_dtypes = { |
| torch.quint8: torch.uint8, |
| torch.quint4x2: torch.uint8, |
| torch.quint2x4: torch.uint8, |
| torch.qint32: torch.int32, |
| torch.qint8: torch.int8 |
| } |
| tmp_dtype = interpret_dtypes[self.dtype] |
| tmp_tensor = torch.tensor([], dtype=tmp_dtype, device=self.device).set_(TypedStorage( |
| wrap_storage=self._storage, |
| dtype=tmp_dtype)) |
| else: |
| tmp_tensor = torch.tensor([], dtype=self.dtype, device=self.device).set_(self) |
| |
| tmp_tensor[idx] = value |
| |
| def __getitem__(self, idx): |
| # NOTE: Before TypedStorage existed, indexing with a slice used to be |
| # possible for <type>Storage objects. However, it would return |
| # a storage view, which would be a hassle to implement in TypedStorage, |
| # so it was disabled |
| if isinstance(idx, slice): |
| raise RuntimeError('slices are only supported in UntypedStorage.__getitem__') |
| elif not isinstance(idx, int): |
| raise RuntimeError(f"can't index a {type(self)} with {type(idx)}") |
| |
| if self.dtype in [torch.quint8, torch.quint4x2, torch.quint2x4, torch.qint32, torch.qint8]: |
| interpret_dtypes = { |
| torch.quint8: torch.uint8, |
| torch.quint4x2: torch.uint8, |
| torch.quint2x4: torch.uint8, |
| torch.qint32: torch.int32, |
| torch.qint8: torch.int8 |
| } |
| return TypedStorage( |
| wrap_storage=self._storage, |
| dtype=interpret_dtypes[self.dtype])[idx] |
| |
| idx_wrapped = self._maybe_wrap_index(idx) |
| tmp_tensor = torch.tensor([], dtype=self.dtype, device=self.device).set_(self) |
| return tmp_tensor[idx_wrapped].item() |
| |
| def copy_(self, source: T, non_blocking=None): |
| self._storage.copy_(source._untyped(), non_blocking) |
| return self |
| |
| def nbytes(self): |
| return self._storage.nbytes() |
| |
| def type(self, dtype: str = None, non_blocking: bool = False) -> Union[T, str]: |
| if dtype is None: |
| return '.'.join([self.__module__, type(self).__name__]) |
| else: |
| return self._storage.type(dtype, non_blocking) |
| |
| def cuda(self, device=None, non_blocking=False, **kwargs) -> T: |
| cuda_storage = self._storage.cuda(device, non_blocking, **kwargs) |
| return self._new_wrapped_storage(cuda_storage) |
| |
| def element_size(self): |
| return torch._utils._element_size(self.dtype) |
| |
| def get_device(self) -> int: |
| return self._storage.get_device() |
| |
| def __str__(self): |
| data_str = ' ' + '\n '.join(str(self[i]) for i in range(self.size())) |
| if type(self) == TypedStorage: |
| return data_str + ( |
| f'\n[{torch.typename(self)} with dtype {self.dtype} ' |
| f'of size {len(self)}]') |
| else: |
| return data_str + f'\n[{torch.typename(self)} of size {len(self)}]' |
| |
| def __repr__(self): |
| return str(self) |
| |
| def __iter__(self): |
| return iter(map(lambda i: self[i], range(self.size()))) |
| |
| def __copy__(self): |
| return self._new_wrapped_storage(copy.copy(self._storage)) |
| |
| def __deepcopy__(self, memo): |
| return self._new_wrapped_storage(copy.deepcopy(self._storage, memo)) |
| |
| def __sizeof__(self): |
| return super(TypedStorage, self).__sizeof__() + self.nbytes() |
| |
| def clone(self): |
| """Returns a copy of this storage""" |
| return self._new_wrapped_storage(self._storage.clone()) |
| |
| def tolist(self): |
| """Returns a list containing the elements of this storage""" |
| return list(self) |
| |
| def cpu(self): |
| """Returns a CPU copy of this storage if it's not already on the CPU""" |
| return self._new_wrapped_storage(self._storage.cpu()) |
| |
| def pin_memory(self): |
| """Coppies the storage to pinned memory, if it's not already pinned.""" |
| return self._new_wrapped_storage(self._storage.pin_memory()) |
| |
| def share_memory_(self): |
| """Moves the storage to shared memory. |
| |
| This is a no-op for storages already in shared memory and for CUDA |
| storages, which do not need to be moved for sharing across processes. |
| Storages in shared memory cannot be resized. |
| |
| Returns: self |
| """ |
| self._storage.share_memory_() |
| return self |
| |
| @classmethod |
| def _new_shared(cls, size): |
| """Creates a new storage in shared memory with the same data type""" |
| module = eval(cls.__module__) |
| untyped_storage = module.UntypedStorage._new_shared(size * cls().element_size()) |
| return cls(wrap_storage=untyped_storage) |
| |
| @property |
| def _cdata(self): |
| return self._storage._cdata |
| |
| @property |
| def device(self): |
| return self._storage.device |
| |
| def size(self): |
| return len(self) |
| |
| def pickle_storage_type(self): |
| try: |
| return _dtype_to_storage_type_map()[self.dtype] |
| except KeyError: |
| raise KeyError(f'dtype {self.dtype} is not recognized') |
| |
| def __reduce__(self): |
| b = io.BytesIO() |
| torch.save(self, b, _use_new_zipfile_serialization=False) |
| return (_load_from_bytes, (b.getvalue(),)) |
| |
| def data_ptr(self): |
| return self._storage.data_ptr() |
| |
| def resize_(self, size): |
| self._storage.resize_(size * self.element_size()) |
| |
| @classmethod |
| def _free_weak_ref(cls, *args, **kwargs): |
| return eval(cls.__module__).UntypedStorage._free_weak_ref(*args, **kwargs) |
| |
| def _weak_ref(self, *args, **kwargs): |
| return self._storage._weak_ref(*args, **kwargs) |
| |
| @classmethod |
| def from_buffer(cls, *args, **kwargs): |
| if cls == TypedStorage: |
| raise RuntimeError( |
| 'from_buffer: only supported for subclasses of TypedStorage') |
| |
| if 'dtype' in kwargs or len(args) == 5: |
| raise RuntimeError(( |
| "from_buffer: 'dtype' can only be specified in " |
| "UntypedStorage.from_buffer")) |
| |
| kwargs['dtype'] = cls().dtype |
| |
| untyped_storage = eval(cls.__module__).UntypedStorage.from_buffer(*args, **kwargs) |
| return cls(wrap_storage=untyped_storage) |
| |
| def _to(self, dtype): |
| storage = torch.tensor([], dtype=self.dtype, device=self.device).set_(self).to(dtype).storage() |
| if storage.data_ptr() == self.data_ptr(): |
| storage = storage.clone() |
| return storage |
| |
| def double(self): |
| """Casts this storage to double type""" |
| return self._to(torch.double) |
| |
| def float(self): |
| """Casts this storage to float type""" |
| return self._to(torch.float) |
| |
| def half(self): |
| """Casts this storage to half type""" |
| return self._to(torch.half) |
| |
| def long(self): |
| """Casts this storage to long type""" |
| return self._to(torch.long) |
| |
| def int(self): |
| """Casts this storage to int type""" |
| return self._to(torch.int) |
| |
| def short(self): |
| """Casts this storage to short type""" |
| return self._to(torch.short) |
| |
| def char(self): |
| """Casts this storage to char type""" |
| return self._to(torch.int8) |
| |
| def byte(self): |
| """Casts this storage to byte type""" |
| return self._to(torch.uint8) |
| |
| def bool(self): |
| """Casts this storage to bool type""" |
| return self._to(torch.bool) |
| |
| def bfloat16(self): |
| """Casts this storage to bfloat16 type""" |
| return self._to(torch.bfloat16) |
| |
| def complex_double(self): |
| """Casts this storage to complex double type""" |
| return self._to(torch.cdouble) |
| |
| def complex_float(self): |
| """Casts this storage to complex float type""" |
| return self._to(torch.cfloat) |
| |
| @classmethod |
| def from_file(cls, filename, shared, size): |
| if cls == TypedStorage: |
| raise RuntimeError('from_file can only be called on derived classes') |
| untyped_storage = eval(cls.__module__).UntypedStorage.from_file( |
| filename, |
| shared, |
| size * torch._utils._element_size(cls.dtype)) |
| storage = cls(wrap_storage=untyped_storage) |
| return storage |
| |
| @classmethod |
| def _expired(cls, *args, **kwargs): |
| return eval(cls.__module__).UntypedStorage._expired(*args, **kwargs) |
| |
| def is_pinned(self): |
| return self._storage.is_pinned() |
| |
| def _write_file(self, *args, **kwargs): |
| return self._storage._write_file(*args, **kwargs) |
| |
| def _set_from_file(self, *args, **kwargs): |
| return self._storage._set_from_file(*args, **kwargs) |
| |
| def _set_cdata(self, *args, **kwargs): |
| return self._storage._set_cdata(*args, **kwargs) |
| |
| def _share_cuda_(self, *args, **kwargs): |
| return self._storage._share_cuda_(*args, **kwargs) |
| |
| def is_shared(self): |
| return self._storage.is_shared() |
| |
| @classmethod |
| def _new_shared_cuda(cls, *args, **kwargs): |
| return eval(cls.__module__).UntypedStorage._new_shared_cuda(*args, **kwargs) |
| |
| @classmethod |
| def _new_with_weak_ptr(cls, *args, **kwargs): |
| return eval(cls.__module__).UntypedStorage._new_with_weak_ptr(*args, **kwargs) |
| |
| def _share_filename_(self, *args, **kwargs): |
| manager_handle, storage_handle, size = self._storage._share_filename_(*args, **kwargs) |
| return manager_handle, storage_handle, size // self.element_size() |
| |
| @classmethod |
| def _new_shared_filename(cls, manager, obj, size): |
| bytes_size = size * torch._utils._element_size(cls.dtype) |
| return cls(wrap_storage=eval(cls.__module__).UntypedStorage._new_shared_filename(manager, obj, bytes_size)) |
| |
| def _shared_decref(self): |
| self._storage._shared_decref() |
| return self |
| |
| @classmethod |
| def _release_ipc_counter(cls, *args, **kwargs): |
| return eval(cls.__module__).UntypedStorage._release_ipc_counter(*args, **kwargs) |
| |
| def _shared_incref(self, *args, **kwargs): |
| return self._storage._shared_incref(*args, **kwargs) |
| |
| def _share_fd_(self, *args, **kwargs): |
| fd, size = self._storage._share_fd_(*args, **kwargs) |
| return fd, size // self.element_size() |
| |
| def _get_dtype_from_pickle_storage_type(pickle_storage_type: str): |
| try: |
| return _storage_type_to_dtype_map()[pickle_storage_type] |
| except KeyError: |
| raise KeyError( |
| f'pickle storage type "{pickle_storage_type}" is not recognized') |