| syntax = "proto2"; |
| |
| import "caffe2/proto/caffe2.proto"; |
| |
| package torch; |
| |
| // Overview |
| // |
| // ONNX is an open specification that is comprised of the following components: |
| // |
| // 1) A definition of an extensible computation graph model. |
| // 2) Definitions of standard data types. |
| // 3) Definitions of built-in operators. |
| // |
| // This document describes the syntax of models and their computation graphs, |
| // as well as the standard data types. Together, they are referred to as the ONNX |
| // Intermediate Representation, or 'IR' for short. |
| // |
| // The normative semantic specification of the ONNX IR is found in docs/IR.md. |
| // Definitions of the built-in neural network operators may be found in docs/Operators.md. |
| |
| // Notes |
| // |
| // Release |
| // |
| // We are still in the very early stage of defining ONNX. The current |
| // version of ONNX is a starting point. While we are actively working |
| // towards a complete spec, we would like to get the community involved |
| // by sharing our working version of ONNX. |
| // |
| // Protobuf compatibility |
| // |
| // To simplify framework compatibility, ONNX is defined using the subset of |
| // protobuf that is compatible with both protobuf v2 and v3. This means that we |
| // do not use any protobuf features that are only available in one of the two |
| // versions. |
| // |
| // Here are the most notable contortions we have to carry out to work around |
| // these limitations: |
| // |
| // - No 'map' (added protobuf 3.0). We instead represent mappings as lists |
| // of key-value pairs, where order does not matter and duplicates |
| // are not allowed. |
| |
| // Versioning |
| // |
| // ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md |
| // |
| // To be compatible with both proto2 and proto3, we will use a version number |
| // that is not defined by the default value but an explicit enum number. |
| enum Version { |
| // proto3 requires the first enum value to be zero. |
| // We add this just to appease the compiler. |
| _START_VERSION = 0; |
| // The version field is always serialized and we will use it to store the |
| // version that the graph is generated from. This helps us set up version |
| // control. |
| // For the IR, we are using simple numbers starting with with 0x00000001, |
| // which was the version we published on Oct 10, 2017. |
| IR_VERSION_2017_10_10 = 0x0000000000000001; |
| |
| // IR_VERSION 2 published on Oct 30, 2017 |
| // - Added type discriminator to AttributeProto to support proto3 users |
| IR_VERSION_2017_10_30 = 0x0000000000000002; |
| |
| // IR VERSION 3 published on Nov 3, 2017 |
| // - For operator versioning: |
| // - Added new message OperatorSetIdProto |
| // - Added opset_import in ModelProto |
| // - For vendor extensions, added domain in NodeProto |
| IR_VERSION_NEWEST_ONNX = 0x0000000000000003; |
| |
| // PYTORCH IR VERSION |
| IR_VERSION_NEWEST = 0x0000000000000103; |
| } |
| |
| // Attributes |
| // |
| // A named attribute containing either singular float, integer, string, graph, |
| // and tensor values, or repeated float, integer, string, graph, and tensor values. |
| // An AttributeProto MUST contain the name field, and *only one* of the |
| // following content fields, effectively enforcing a C/C++ union equivalent. |
| message AttributeProto { |
| |
| // Note: this enum is structurally identical to the OpSchema::AttrType |
| // enum defined in schema.h. If you rev one, you likely need to rev the other. |
| enum AttributeType { |
| UNDEFINED = 0; |
| FLOAT = 1; |
| INT = 2; |
| STRING = 3; |
| TENSOR = 4; |
| GRAPH = 5; |
| |
| FLOATS = 6; |
| INTS = 7; |
| STRINGS = 8; |
| TENSORS = 9; |
| GRAPHS = 10; |
| } |
| |
| // The name field MUST be present for this version of the IR. |
| optional string name = 1; // namespace Attribute |
| |
| // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function. |
| // In this case, this AttributeProto does not contain data, and it's a reference of attribute |
| // in parent scope. |
| // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph. |
| optional string ref_attr_name = 21; |
| |
| // A human-readable documentation for this attribute. Markdown is allowed. |
| optional string doc_string = 13; |
| |
| // The type field MUST be present for this version of the IR. |
| // For 0.0.1 versions of the IR, this field was not defined, and |
| // implementations needed to use has_field hueristics to determine |
| // which value field was in use. For IR_VERSION 0.0.2 or later, this |
| // field MUST be set and match the f|i|s|t|... field in use. This |
| // change was made to accomodate proto3 implementations. |
| optional AttributeType type = 20; // discriminator that indicates which field below is in use |
| |
| // Exactly ONE of the following fields must be present for this version of the IR |
| optional float f = 2; // float |
| optional int64 i = 3; // int |
| optional bytes s = 4; // UTF-8 string |
| optional TensorProto t = 5; // tensor value |
| optional GraphProto g = 6; // graph |
| // Do not use field below, it's deprecated. |
| // optional ValueProto v = 12; // value - subsumes everything but graph |
| |
| repeated float floats = 7; // list of floats |
| repeated int64 ints = 8; // list of ints |
| repeated bytes strings = 9; // list of UTF-8 strings |
| repeated TensorProto tensors = 10; // list of tensors |
| repeated GraphProto graphs = 11; // list of graph |
| } |
| |
| // Defines information on value, including the name, the type, and |
| // the shape of the value. |
| message ValueInfoProto { |
| // This field MUST be present in this version of the IR. |
| optional string name = 1; // namespace Value |
| // This field MUST be present in this version of the IR. |
| optional TypeProto type = 2; |
| // A human-readable documentation for this value. Markdown is allowed. |
| optional string doc_string = 3; |
| } |
| |
| // Nodes |
| // |
| // Computation graphs are made up of a DAG of nodes, which represent what is |
| // commonly called a "layer" or "pipeline stage" in machine learning frameworks. |
| // |
| // For example, it can be a node of type "Conv" that takes in an image, a filter |
| // tensor and a bias tensor, and produces the convolved output. |
| message NodeProto { |
| repeated string input = 1; // namespace Value |
| repeated string output = 2; // namespace Value |
| |
| // An optional identifier for this node in a graph. |
| // This field MAY be absent in ths version of the IR. |
| optional string name = 3; // namespace Node |
| |
| // The symbolic identifier of the Operator to execute. |
| optional string op_type = 4; // namespace Operator |
| // The domain of the OperatorSet that specifies the operator named by op_type. |
| optional string domain = 7; // namespace Domain |
| |
| // Additional named attributes. |
| repeated AttributeProto attribute = 5; |
| |
| // A human-readable documentation for this node. Markdown is allowed. |
| // Equivalent to string debug_info |
| optional string doc_string = 6; |
| |
| // Additional annotations, attributes are defined in Schema |
| // To be added as annotations: |
| // string engine |
| // string list control_input |
| // int64 is_gradient_op |
| repeated AttributeProto annotations = 8; |
| |
| // Besides the node type, PyTorhc also serialize ATen function signature |
| optional caffe2.DeviceOption device_option = 51; |
| optional string aten_function = 52; |
| } |
| |
| // Models |
| // |
| // ModelProto is a top-level file/container format for bundling a ML model and |
| // associating its computation graph with metadata. |
| // |
| // The semantics of the model are described by the associated GraphProto. |
| // |
| // Model ==> Caffe2 MetaNetDef |
| // ==> PyTorch Module |
| message ModelProto { |
| // The version of the IR this model targets. See Version enum above. |
| // This field MUST be present. |
| optional int64 ir_version = 1; |
| |
| // The OperatorSets this model relies on. |
| // All ModelProtos MUST have at least one entry that |
| // specifies which version of the ONNX OperatorSet is |
| // being imported. |
| // |
| // All nodes in the ModelProto's graph will bind against the operator |
| // with the same-domain/same-op_type operator with the HIGHEST version |
| // in the referenced operator sets. |
| repeated OperatorSetIdProto opset_import = 8; |
| |
| // The name of the framework or tool used to generate this model. |
| // This field SHOULD be present to indicate which implementation/tool/framework |
| // emitted the model. |
| optional string producer_name = 2; |
| |
| // The version of the framework or tool used to generate this model. |
| // This field SHOULD be present to indicate which implementation/tool/framework |
| // emitted the model. |
| optional string producer_version = 3; |
| |
| // Domain name of the model. |
| // We use reverse domain names as name space indicators. For example: |
| // `com.facebook.fair` or `com.microsoft.cognitiveservices` |
| // |
| // Together with `model_version` and GraphProto.name, this forms the unique identity of |
| // the graph. |
| optional string domain = 4; |
| |
| // The version of the graph encoded. See Version enum below. |
| optional int64 model_version = 5; |
| |
| // A human-readable documentation for this model. Markdown is allowed. |
| optional string doc_string = 6; |
| |
| // The parameterized graph that is evaluated to execute the model. |
| // The main graph, in single graph case, it is ONNX compatible. |
| optional GraphProto graph = 7; |
| |
| // The remaining nets in MetaNetDef. |
| // Submodules and methods in PyTorch. |
| repeated GraphProto methods = 15; |
| |
| // Named metadata values; keys should be distinct. |
| // Many meta data in MetaNetDef and preditor are piggy backed here. |
| // 1) project |
| // 2) model_class |
| // 3) internal_version |
| // 4) predictor_type |
| // 5) predictor_id |
| // 6) execute_plan |
| // 7) applicationSpecificInfo (another string map, need to verify it has no duplicate.) |
| // 8) engine |
| // 9) publish time |
| repeated StringStringEntryProto metadata_props = 14; |
| |
| // Model name |
| optional string name = 16; |
| |
| // Model name |
| repeated AttributeProto annotations = 17; |
| |
| // Mapping from list name to blob name list, must be string list type. |
| // Equivalent to blobs in MetaNetDef. |
| repeated AttributeProto blob_lists = 51; |
| |
| // Mapping from plan name to serialized plan, must be string list type. |
| // Equivalent to plans in MetaNetDef. |
| repeated AttributeProto plans = 52; |
| }; |
| |
| // StringStringEntryProto follows the pattern for cross-proto-version maps. |
| // See https://developers.google.com/protocol-buffers/docs/proto3#maps |
| message StringStringEntryProto { |
| optional string key = 1; |
| optional string value= 2; |
| }; |
| |
| // Graphs |
| // |
| // A graph defines the computational logic of a model and is comprised of a parameterized |
| // list of nodes that form a directed acyclic graph based on their inputs and outputs. |
| // This is the equivalent of the "network" or "graph" in many deep learning |
| // frameworks. |
| // Graph ==> NetDef in Caffe2 |
| // ==> Submodule/Method in PyTorch |
| message GraphProto { |
| // The nodes in the graph, sorted topologically. |
| repeated NodeProto node = 1; |
| |
| // The name of the graph. |
| optional string name = 2; // namespace Graph |
| |
| // A list of named tensor values, used to specify constant inputs of the graph. |
| // Each TensorProto entry must have a distinct name (within the list) that |
| // also appears in the input list. |
| repeated TensorProto initializer = 5; |
| |
| // A human-readable documentation for this graph. Markdown is allowed. |
| optional string doc_string = 10; |
| |
| // The inputs and outputs of the graph. |
| repeated ValueInfoProto input = 11; |
| repeated ValueInfoProto output = 12; |
| |
| // Information for the values in the graph. The ValueInfoProto.name's |
| // must be distinct. It is optional for a value to appear in value_info list. |
| repeated ValueInfoProto value_info = 13; |
| |
| // Additional annotations. |
| repeated AttributeProto annotations = 14; |
| |
| // DO NOT USE the following fields, they were deprecated from earlier versions. |
| // repeated string input = 3; |
| // repeated string output = 4; |
| // optional int64 ir_version = 6; |
| // optional int64 producer_version = 7; |
| // optional string producer_tag = 8; |
| // optional string domain = 9; |
| } |
| |
| // Tensors |
| // |
| // A serialized tensor value. |
| message TensorProto { |
| enum DataType { |
| UNDEFINED = 0; |
| // Basic types. |
| FLOAT = 1; // float |
| UINT8 = 2; // uint8_t |
| INT8 = 3; // int8_t |
| UINT16 = 4; // uint16_t |
| INT16 = 5; // int16_t |
| INT32 = 6; // int32_t |
| INT64 = 7; // int64_t |
| STRING = 8; // string |
| BOOL = 9; // bool |
| |
| // Advanced types |
| FLOAT16 = 10; |
| DOUBLE = 11; |
| UINT32 = 12; |
| UINT64 = 13; |
| COMPLEX64 = 14; // complex with float32 real and imaginary components |
| COMPLEX128 = 15; // complex with float64 real and imaginary components |
| // Future extensions go here. |
| |
| // Special data type, real type information is stored in ValueInfoProto. |
| // If data_type is SPECIAL, raw_data should be used. |
| SPECIAL = 51; |
| } |
| |
| // The shape of the tensor. |
| repeated int64 dims = 1; |
| repeated int64 strides = 14; |
| |
| // The data type of the tensor. |
| optional DataType data_type = 2; |
| |
| // For very large tensors, we may want to store them in chunks, in which |
| // case the following fields will specify the segment that is stored in |
| // the current TensorProto. |
| message Segment { |
| optional int64 begin = 1; |
| optional int64 end = 2; |
| optional int64 chuck_num = 51; |
| optional int64 chuck_id = 52; |
| } |
| // Used as offset in the external shared data. |
| optional Segment segment = 3; |
| |
| // Tensor content must be organized in row-major order. |
| // |
| // Depending on the data_type field, exactly one of the fields below with |
| // name ending in _data is used to store the elements of the tensor. |
| |
| // For float and complex64 values |
| // Complex64 tensors are encoded as a single array of floats, |
| // with the real components appearing in odd numbered positions, |
| // and the corresponding imaginary component apparing in the |
| // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] |
| // is encoded as [1.0, 2.0 ,3.0 ,4.0] |
| // When this field is present, the data_type field MUST be FLOAT or COMPLEX64. |
| repeated float float_data = 4 [packed = true]; |
| |
| // For int32, uint8, int8, uint16, int16, bool, and Half values |
| // float16 values must be bit-wise converted to an uint16_t prior |
| // to writing to the buffer. |
| // When this field is present, the data_type field MUST be |
| // INT32, INT16, INT8, UINT16, INT8, BOOL, or FLOAT16 |
| repeated int32 int32_data = 5 [packed = true]; |
| |
| // For strings. |
| // Each element of string_data is a UTF-8 encoded Unicode |
| // string. No trailing null, no leading BOM. The protobuf "string" |
| // scalar type is not used to match ML community conventions. |
| // When this field is present, the data_type field MUST be STRING |
| repeated bytes string_data = 6; |
| |
| // For int64. |
| // When this field is present, the data_type field MUST be INT64 |
| repeated int64 int64_data = 7 [packed = true]; |
| |
| // Optionally, a name for the tensor. |
| optional string name = 8; // namespace Value |
| |
| // A human-readable documentation for this tensor. Markdown is allowed. |
| optional string doc_string = 12; |
| |
| // Serializations can either use one of the fields above, or use this |
| // raw bytes field. The only exception is the string case, where one is |
| // required to store the content in the repeated bytes string_data field. |
| // |
| // When this raw_data field is used to store tensor value, elements MUST |
| // be stored in as fixed-width, little-endian order. |
| // Floating-point data types MUST be stored in IEEE 754 format. |
| // Complex64 elements must be written as two consecutive FLOAT values, real component first. |
| // Complex128 elements must be written as two consecutive DOUBLE values, real component first. |
| // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false). |
| // |
| // Note: the advantage of specific field rather than the raw_data field is |
| // that in some cases (e.g. int data), protobuf does a better packing via |
| // variable length storage, and may lead to smaller binary footprint. |
| // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED |
| optional bytes raw_data = 9; |
| |
| // For double |
| // Complex64 tensors are encoded as a single array of doubles, |
| // with the real components appearing in odd numbered positions, |
| // and the corresponding imaginary component apparing in the |
| // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] |
| // is encoded as [1.0, 2.0 ,3.0 ,4.0] |
| // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128 |
| repeated double double_data = 10 [packed = true]; |
| |
| // For uint64 and uint32 values |
| // When this field is present, the data_type field MUST be |
| // UINT32 or UINT64 |
| repeated uint64 uint64_data = 11 [packed = true]; |
| |
| // External data by file name |
| optional string external_data = 13; |
| |
| // If two tensors represent the same weights/content, use alias. |
| // Must exist a TensorProto named alias in the initializer list. |
| // To avoid the duplicate tensor in attribute, such as value in Constant node. |
| // This is useful, if everything is stored just in the proto. |
| optional string alias = 16; |
| |
| // Additional annotations. |
| repeated AttributeProto annotations = 17; |
| |
| // Device info |
| optional caffe2.DeviceOption device_option = 51; |
| |
| // For PyTorch serialized tensor. |
| optional int64 require_gradient = 52; |
| optional int64 is_buffer = 53; |
| } |
| |
| // Defines a tensor shape. A dimension can be either an integer value |
| // or a symbolic variable. A symbolic variable represents an unknown |
| // dimension. |
| message TensorShapeProto { |
| message Dimension { |
| oneof value { |
| int64 dim_value = 1; |
| string dim_param = 2; // namespace Shape |
| }; |
| // Standard denotation can optionally be used to denote tensor |
| // dimensions with standard semantic descriptions to ensure |
| // that operations are applied to the correct axis of a tensor. |
| // Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition |
| // for pre-defined dimension denotations. |
| optional string denotation = 3; |
| }; |
| // To represent a scalar, using no dim to represent 0-d tensor. |
| repeated Dimension dim = 1; |
| |
| repeated Dimension stride = 51; |
| } |
| |
| // Types |
| // |
| // The standard ONNX data types. |
| message TypeProto { |
| |
| message Tensor { |
| // This field MUST NOT have the value of UNDEFINED |
| // This field MUST be present for this version of the IR. |
| optional TensorProto.DataType elem_type = 1; |
| optional TensorShapeProto shape = 2; |
| } |
| |
| // Sequence type: List, Tuple |
| message Sequence { |
| // elem_type and elem_type_list cannot appear together. |
| // If all the element types are the same, we use elem_type, |
| // otherwise, we specify the type of each element in elem_type_list. |
| optional TypeProto elem_type = 1; |
| repeated TypeProto elem_type_list = 51; |
| enum SequenceType { |
| UNDEFINED = 0; |
| LIST = 1; |
| TUPLE = 2; |
| } |
| optional SequenceType sequence_type = 52; |
| } |
| |
| // Map<K, V>, (not necessary at this moment) |
| message Map { |
| optional TensorProto.DataType key_type = 1; |
| optional TypeProto value_type = 2; |
| } |
| |
| // Special type of blobs, based on the type_name, we can choose the right |
| // serializer and deserialzier. |
| message SpecialBlob { |
| optional string type_name = 1; |
| } |
| |
| oneof value { |
| // The type of a tensor. |
| Tensor tensor_type = 1; |
| Sequence sequence_type = 4; |
| Map map_type = 5; |
| SpecialBlob special_type = 51; |
| } |
| |
| // An optional denotation can be used to denote the whole |
| // type with a standard semantic description as to what is |
| // stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition |
| // for pre-defined type denotations. |
| optional string denotation = 6; |
| } |
| |
| // Operator Sets |
| // |
| // OperatorSets are uniquely identified by a (domain, opset_version) pair. |
| message OperatorSetIdProto { |
| // The domain of the operator set being identified. |
| // The empty string ("") or absence of this field implies the operator |
| // set that is defined as part of the ONNX specification. |
| // This field MUST be present in this version of the IR when referring to any other operator set. |
| optional string domain = 1; |
| |
| // The version of the operator set being identified. |
| // This field MUST be present in this version of the IR. |
| optional int64 version = 2; |
| } |