blob: 88531a5343dbfac1bc187108f9fce179721140c8 [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/NativeFunctions.h>
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
Tensor& mkldnn_add_out(
Tensor& result,
const Tensor& self,
const Tensor& other,
Scalar alpha) {
AT_ERROR("mkldnn_add_out: ATen not compiled with MKLDNN support");
}
Tensor mkldnn_add(const Tensor& self, const Tensor& other, Scalar alpha) {
AT_ERROR("mkldnn_add: ATen not compiled with MKLDNN support");
}
Tensor& mkldnn_add_(Tensor& self, const Tensor& other, Scalar alpha) {
AT_ERROR("mkldnn_add_: ATen not compiled with MKLDNN support");
}
Tensor& mkldnn_mul_out(Tensor& result, const Tensor& self, const Tensor& other) {
AT_ERROR("mkldnn_mul_out: ATen not compiled with MKLDNN support");
}
Tensor mkldnn_mul(const Tensor& self, const Tensor& other) {
AT_ERROR("mkldnn_mul: ATen not compiled with MKLDNN support");
}
Tensor& mkldnn_mul_(Tensor& self, const Tensor& other) {
AT_ERROR("mkldnn_mul_: ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_EBABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
namespace at {
namespace native {
Tensor& mkldnn_add_out(
Tensor& result,
const Tensor& self,
const Tensor& other,
Scalar alpha) {
ideep::tensor& x = itensor_from_mkldnn(self);
ideep::tensor& y = itensor_from_mkldnn(other);
ideep::tensor& z = itensor_from_mkldnn(result);
const std::vector<float> scales{1.0, alpha.to<float>()};
ideep::sum::compute<AllocForMKLDNN>(scales, {x, y}, z);
return result;
}
Tensor mkldnn_add(const Tensor& self, const Tensor& other, Scalar alpha) {
ideep::tensor& x = itensor_from_mkldnn(self);
ideep::tensor& y = itensor_from_mkldnn(other);
ideep::tensor z;
const std::vector<float> scales{1.0, alpha.to<float>()};
ideep::sum::compute<AllocForMKLDNN>(scales, {x, y}, z);
return new_with_itensor_mkldnn(std::move(z), self.options());
}
Tensor& mkldnn_add_(Tensor& self, const Tensor& other, Scalar alpha) {
return native::mkldnn_add_out(self, self, other, alpha);
}
Tensor& mkldnn_mul_out(Tensor& result, const Tensor& self, const Tensor& other) {
AT_ASSERTM(result.sizes() == self.sizes(),
"mkldnn_mul_out: the output size should be same as input size");
ideep::tensor& z = itensor_from_mkldnn(result);
ideep::tensor& x = itensor_from_mkldnn(self);
// for zero_dim tensor
if (other.ndimension() == 0) {
ideep::eltwise_forward::compute<AllocForMKLDNN>(
x, z, ideep::algorithm::eltwise_linear,
ideep::prop_kind::forward_inference, /*alpha*/ other.item().to<float>());
return result;
} else {
AT_ASSERTM(self.sizes() == other.sizes(),
"mkldnn_mul_out: currently mkldnn not support broadcasting");
ideep::tensor y = itensor_from_mkldnn(other);
auto op = ideep::eltwise_binary::eltwise_binary_op::ELTWISE_MUL;
ideep::eltwise_binary::compute<AllocForMKLDNN>(op, x, y, z);
return result;
}
}
Tensor mkldnn_mul(const Tensor& self, const Tensor& other) {
Tensor result = empty_mkldnn(self.sizes(), self.options());
return native::mkldnn_mul_out(result, self, other);
}
Tensor& mkldnn_mul_(Tensor& self, const Tensor& other) {
return native::mkldnn_mul_out(self, self, other);
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_EBABLED