blob: be47638394bf65cf2d7435753a9eb985cee4a9d1 [file] [log] [blame]
#pragma once
#include <ATen/core/ATenGeneral.h>
#include <ATen/core/Generator.h>
#include <c10/core/StorageImpl.h>
#include <c10/core/UndefinedTensorImpl.h>
#include <c10/core/ScalarType.h>
#include <ATen/Formatting.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <sstream>
#include <typeinfo>
#include <numeric>
#include <memory>
#if defined(__clang__)
#define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
#define __ubsan_ignore_vptr__ __attribute__((no_sanitize("vptr")))
#else
#define __ubsan_ignore_float_divide_by_zero__
#define __ubsan_ignore_vptr__
#endif
#define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&) = delete; \
void operator=(const TypeName&) = delete
namespace at {
CAFFE2_API int _crash_if_asan(int);
static inline const Storage& checked_storage(
const Storage& expr,
const char* name,
int pos,
DeviceType device_type,
caffe2::TypeMeta dtype) {
if (expr.device_type() != device_type) {
AT_ERROR(
"Expected object of device type ",
device_type,
" but got device type ",
expr.data_ptr().device().type(),
" for argument #",
pos,
" '",
name,
"'");
}
if (expr.dtype() != dtype) {
AT_ERROR(
"Expected object of data type ",
dtype,
" but got data type ",
expr.dtype().id(),
" for argument #",
pos,
" '",
name,
"'");
}
return expr;
}
// TODO: Change Backend into TensorTypeId
// TODO: Stop unwrapping (this is blocked on getting rid of TH ;)
static inline TensorImpl* checked_tensor_unwrap(const Tensor& expr, const char * name, int pos, bool allowNull, Backend backend, ScalarType scalar_type) {
if(allowNull && !expr.defined()) {
return nullptr;
}
if (tensorTypeIdToBackend(expr.type_id()) != backend) {
AT_ERROR("Expected object of backend ", backend, " but got backend ", tensorTypeIdToBackend(expr.type_id()),
" for argument #", pos, " '", name, "'");
}
if (expr.scalar_type() != scalar_type) {
AT_ERROR("Expected object of scalar type ", scalar_type, " but got scalar type ", expr.scalar_type(),
" for argument #", pos, " '", name, "'");
}
if (expr.is_variable()) { // TODO: change this to check `.requires_grad()` and `GradMode::is_enabled()` when Variable and Tensor are merged
AT_ERROR("Expected Tensor (not Variable) for argument #", pos, " '", name, "'");
}
return expr.unsafeGetTensorImpl();
}
// Converts a TensorList (i.e. ArrayRef<Tensor> to vector of TensorImpl*)
static inline std::vector<TensorImpl*> checked_tensor_list_unwrap(ArrayRef<Tensor> tensors, const char * name, int pos, Backend backend, ScalarType scalar_type) {
std::vector<TensorImpl*> unwrapped;
unwrapped.reserve(tensors.size());
for (unsigned int i = 0; i < tensors.size(); ++i) {
const auto& expr = tensors[i];
if (tensorTypeIdToBackend(expr.type_id()) != backend) {
AT_ERROR("Expected object of backend ", backend, " but got backend ", tensorTypeIdToBackend(expr.type_id()),
" for sequence element ", i, " in sequence argument at position #", pos, " '", name, "'");
}
if (expr.scalar_type() != scalar_type) {
AT_ERROR("Expected object of scalar type ", scalar_type, " but got scalar type ", expr.scalar_type(),
" for sequence element ", i , " in sequence argument at position #", pos, " '", name, "'");
}
if (expr.is_variable()) { // TODO: change this to check `.requires_grad()` and `GradMode::is_enabled()` when Variable and Tensor are merged
AT_ERROR("Expected Tensor (not Variable) for sequence element ",
i , " in sequence argument at position #", pos, " '", name, "'");
}
unwrapped.emplace_back(expr.unsafeGetTensorImpl());
}
return unwrapped;
}
template <size_t N>
std::array<int64_t, N> check_intlist(ArrayRef<int64_t> list, const char * name, int pos, ArrayRef<int64_t> def={}) {
if (list.empty()) {
list = def;
}
auto res = std::array<int64_t, N>();
if (list.size() == 1 && N > 1) {
res.fill(list[0]);
return res;
}
if (list.size() != N) {
AT_ERROR("Expected a list of ", N, " ints but got ", list.size(), " for argument #", pos, " '", name, "'");
}
std::copy_n(list.begin(), N, res.begin());
return res;
}
inline int64_t sum_intlist(ArrayRef<int64_t> list) {
return std::accumulate(list.begin(), list.end(), 0ll);
}
inline int64_t prod_intlist(ArrayRef<int64_t> list) {
return std::accumulate(list.begin(), list.end(), 1ll, std::multiplies<int64_t>());
}
/**
* Utility function used in tensor implementations, which
* supplies the default generator to tensors, if an input generator
* is not supplied. The input Generator* is also static casted to
* the backend generator type (CPU/CUDAGenerator etc.)
*/
template <typename T>
static inline T * get_generator_or_default(Generator * expr, Generator * defaultValue) {
if (!expr) {
expr = defaultValue;
}
if (T::device_type() == expr->device().type()) {
return static_cast<T*>(expr);
}
AT_ERROR("Expected a '", T::device_type(), "' device type for generator but found '", expr->device().type(), "'");
}
/**
* Utility function to static cast input Generator* to
* the backend generator type (CPU/CUDAGenerator etc.)
*/
template <typename T>
static inline T * check_generator(Generator * expr) {
if (T::device_type() == expr->device().type()) {
return static_cast<T*>(expr);
}
AT_ERROR("Expected a '", T::device_type(), "' device type for generator but found '", expr->device().type(), "'");
}
} // at