| #include <ATen/ATen.h> |
| #include <ATen/SparseTensorImpl.h> |
| |
| namespace at { namespace sparse { |
| |
| // Just for documentary purposes |
| using SparseTensor = Tensor; |
| using LongTensor = Tensor; |
| using IntTensor = Tensor; |
| using SparseType = Type; |
| |
| // This is an internal utility function for getting at the SparseTensorImpl, |
| // so that we can write sparse tensor specific accessors for special fields |
| // in SparseTensor. You should only use this for writing low level |
| // setters/getters for SparseTensorImpl fields; otherwise, you should use |
| // the low level setters/getters that were implemented using this. |
| // |
| // This may be called repeatedly, so make sure it's pretty cheap. |
| inline SparseTensorImpl* get_sparse_impl(const SparseTensor& self) { |
| AT_ASSERTM(!self.is_variable(), "_internal_get_SparseTensorImpl: should not be a variable"); // TODO: remove this when Variable and Tensor are merged |
| AT_ASSERTM(self.is_sparse(), "_internal_get_SparseTensorImpl: not a sparse tensor"); |
| return static_cast<SparseTensorImpl*>(self.unsafeGetTensorImpl()); |
| } |
| |
| // Takes indices and values and directly puts them into the sparse tensor, no |
| // copy. This used to be called THSTensor_(_move) |
| inline void alias_into_sparse(const SparseTensor& self, const LongTensor& indices, const Tensor& values) { |
| get_sparse_impl(self)->set_indices_and_values_unsafe(indices, values); |
| } |
| |
| // Take indices and values and makes a (data) copy of them to put into the sparse |
| // indices/values. This used to be called THSTensor_(_set) |
| inline void copy_into_sparse(const SparseTensor& self, const LongTensor& indices, const Tensor& values, bool non_blocking) { |
| alias_into_sparse( |
| self, |
| indices.to(self._indices().options(), non_blocking, /*copy=*/true), |
| values.to(self._values().options(), non_blocking, /*copy=*/true)); |
| } |
| |
| // TODO: put this into the public API |
| inline bool is_same_tensor(const Tensor& lhs, const Tensor& rhs) { |
| return lhs.unsafeGetTensorImpl() == rhs.unsafeGetTensorImpl(); |
| } |
| |
| inline bool is_same_density(const SparseTensor& self, const SparseTensor& src) { |
| return self.sparse_dim() == src.sparse_dim() && self.dense_dim() == src.dense_dim(); |
| } |
| |
| // Give us a new values tensor, with the same dimensionality |
| // as 'values' but with a new number of non-zero elements. |
| // TODO: Expose this for real in ATen, some day? |
| // NB: Doesn't preserve data. |
| inline Tensor new_values_with_size_of(const Tensor& values, int64_t nnz) { |
| std::vector<int64_t> size = values.sizes().vec(); |
| size[0] = nnz; |
| return at::empty(size, values.options()); |
| } |
| |
| // NOTE [ Flatten Sparse Indices ] |
| // This helper function flattens a sparse indices tensor (a LongTensor) into a 1D |
| // indices tensor. E.g., |
| // input = [[2, 4, 0], |
| // [3, 1, 10]] |
| // full_size = [2, 12] |
| // output = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 10 ] = [27, 49, 10] |
| // |
| // In other words, assuming that each `indices[i, :]` is a valid index to a |
| // tensor `t` of shape `full_size`. This returns the corresponding indices to |
| // the flattened tensor `t.reshape( prod(full_size[:indices.size(0)]), -1 )`. |
| // if forceClone is true, the result will forced to be a clone of self. |
| // if force_clone is true, the result will forced to be a clone of self. |
| inline LongTensor flatten_indices(const Tensor& indices, IntArrayRef full_size, bool force_clone = false) { |
| int64_t sparse_dim = indices.size(0); |
| if (sparse_dim == 1) { |
| if (force_clone) { |
| return indices.squeeze(0).clone(); |
| } else { |
| return indices.squeeze(0); |
| } |
| } else { |
| std::vector<int64_t> indices_mult_cpu_vec; |
| indices_mult_cpu_vec.reserve(sparse_dim); |
| int64_t mult = 1; |
| for (int64_t i = sparse_dim - 1; i >= 0; i--) { |
| indices_mult_cpu_vec[i] = mult; |
| mult *= full_size[i]; |
| } |
| auto indices_mult_cpu = at::from_blob( |
| indices_mult_cpu_vec.data(), |
| /*size=*/{sparse_dim, 1}, |
| indices.options().device(kCPU)); |
| // NB: must be blocking because this blob may be freed after this closure, |
| // and non_blocking copy will see garbage. |
| auto indices_mult = indices_mult_cpu.to(indices.device(), /*non_blocking=*/false); |
| // Ideally we want matmul but matmul is slow on CPU Long and not implemented |
| // on CUDA Long. So mul is faster. |
| return indices.mul(indices_mult).sum(0); |
| } |
| } |
| |
| // Flatten sparse tensor's indices from nD to 1D, similar to NOTE [ Flatten Sparse Indices ], |
| // except this one allows partial flatten: only flatten on specified dims. Note that |
| // the flatten indices might be uncoalesced if dims_to_flatten.size() < sparse_dim. |
| // Also if input indices is already coalesced, the flattened indices will also be sorted. |
| // |
| // args: |
| // indices: sparse tensor indices |
| // sizes: sparse tensor sizes |
| // dims_to_flatten: a list of dim index to flatten |
| // |
| // Ex1: |
| // indices = [[2, 4, 0], |
| // [3, 1, 3]] |
| // sizes = [2, 12] |
| // dims_to_flatten = [0, 1] |
| // new_indices = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 3 ] = [27, 49, 3] |
| // |
| // Ex2: |
| // dims_to_flatten = [1] |
| // new_indices = [ 3, 1, 3 ] # uncoalesced |
| inline LongTensor flatten_indices_by_dims(const LongTensor& indices, const IntArrayRef& sizes, const IntArrayRef& dims_to_flatten){ |
| LongTensor new_indices = at::zeros({indices.size(1)}, indices.options()); |
| for (auto d : dims_to_flatten) { |
| new_indices.mul_(sizes[d]); |
| new_indices.add_(indices.select(0, d)); |
| } |
| return new_indices; |
| } |
| |
| }} // namespace at::sparse |