| #pragma once |
| |
| #include <ATen/Tensor.h> |
| #include <c10/core/TensorImpl.h> |
| #include <c10/util/Exception.h> |
| |
| namespace at { |
| struct CAFFE2_API SparseTensorImpl : public TensorImpl { |
| // Stored in COO format, indices + values. |
| |
| // INVARIANTS: |
| // sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape) |
| // dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape) |
| // _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz) |
| // _values.shape: dimensionality: 1 + dense_dim. shape: (nnz, shape[sparse_dim:]) |
| |
| int64_t sparse_dim_ = 0; // number of sparse dimensions |
| int64_t dense_dim_ = 0; // number of dense dimensions |
| |
| Tensor indices_; // always a LongTensor |
| Tensor values_; |
| |
| // A sparse tensor is 'coalesced' if every index occurs at most once in |
| // the indices tensor, and the indices are in sorted order. (This means |
| // that it is very easy to convert a coalesced tensor to CSR format: you |
| // need only compute CSR format indices.) |
| // |
| // Most math operations can only be performed on coalesced sparse tensors, |
| // because many algorithms proceed by merging two sorted lists (of indices). |
| bool coalesced_ = false; |
| |
| public: |
| // Public for now... |
| explicit SparseTensorImpl(at::TensorTypeId, const caffe2::TypeMeta&); |
| |
| int64_t nnz() const { return values_.size(0); } |
| int64_t sparse_dim() const { return sparse_dim_; } |
| int64_t dense_dim() const { return dense_dim_; } |
| bool coalesced() const { return coalesced_; } |
| Tensor indices() const { return indices_; } |
| Tensor values() const { return values_; } |
| |
| IntArrayRef strides() const override; |
| bool is_contiguous(at::MemoryFormat memory_format=at::MemoryFormat::Contiguous) const override; |
| int64_t stride(int64_t d) const override; |
| void resize_dim(int64_t ndim) override; |
| void set_size(int64_t dim, int64_t new_size) override; |
| void set_stride(int64_t dim, int64_t new_stride) override; |
| void set_storage_offset(int64_t storage_offset) override; |
| |
| int64_t dim() const override; |
| TensorImpl* maybe_zero_dim(bool condition_when_zero_dim) override; |
| bool has_storage() const override; |
| const Storage& storage() const override; |
| int64_t storage_offset() const override; |
| |
| // WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim with |
| // respect to indices and values |
| void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "raw_resize_ is not allowed on Tensor created from .data or .detach()"); |
| sizes_ = size.vec(); |
| sparse_dim_ = sparse_dim; |
| dense_dim_ = dense_dim; |
| refresh_numel(); |
| } |
| |
| // NOTE: This function preserves invariants of sparse_dim/dense_dim with respect to |
| // indices and values. |
| // |
| // NOTE: This function supports the following cases: |
| // 1. When we keep the number of dense dimensions unchanged, and NOT shrinking the size of |
| // any of the dense dimensions. |
| // 2. When we keep the number of sparse dimensions unchanged, and NOT shrinking the size of |
| // any of the sparse dimensions. |
| // 3. When the sparse tensor has zero nnz, in which case we are free to change the shapes of |
| // both its sparse and dense dimensions. |
| // |
| // This function DOESN'T support (and will throw an error) the following cases: |
| // 1. When we attempt to change the number of sparse dimensions on a non-empty sparse tensor |
| // (such an operation will invalidate the indices stored). |
| // 2. When we attempt to change the number of dense dimensions on a non-empty sparse tensor |
| // (such an operation will behave differently from an equivalent dense tensor's resize method, |
| // and for API consistency we don't support it). |
| // 3. When we attempt to shrink the size of any of the dense dimensions on a non-empty sparse tensor |
| // (such an operation will behave differently from an equivalent dense tensor's resize method, |
| // and for API consistency we don't support it). |
| // 4. When we attempt to shrink the size of any of the sparse dimensions on a non-empty sparse tensor |
| // (this could make some of the stored indices out-of-bound and thus unsafe). |
| void resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "resize_ is not allowed on Tensor created from .data or .detach()"); |
| TORCH_CHECK(sparse_dim + dense_dim == static_cast<int64_t>(size.size()), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size()); |
| if (nnz() > 0) { |
| auto alt_options_msg = "You could try the following options:\n\ |
| 1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\ |
| 2. If you need to resize this tensor, you have the following options:\n\ |
| 1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\ |
| 2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor."; |
| |
| TORCH_CHECK(sparse_dim == sparse_dim_, |
| "changing the number of sparse dimensions (from ", sparse_dim_, " to ", sparse_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg); |
| |
| TORCH_CHECK(dense_dim == dense_dim_, |
| "changing the number of dense dimensions (from ", dense_dim_, " to ", dense_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg); |
| |
| bool shrinking_sparse_dims = false; |
| bool shrinking_dense_dim = false; |
| auto sparse_size_original = sizes().slice(0, sparse_dim); |
| auto sparse_size_new = size.slice(0, sparse_dim); |
| for (int64_t i = 0; i < sparse_dim; i++) { |
| if (sparse_size_new[i] < sparse_size_original[i]) { |
| shrinking_sparse_dims = true; |
| break; |
| } |
| } |
| auto dense_size_original = sizes().slice(sparse_dim); |
| auto dense_size_new = size.slice(sparse_dim); |
| for (int64_t i = 0; i < dense_dim; i++) { |
| if (dense_size_new[i] < dense_size_original[i]) { |
| shrinking_dense_dim = true; |
| break; |
| } |
| } |
| |
| TORCH_CHECK(!shrinking_sparse_dims, |
| "shrinking the size of sparse dimensions (from ", sparse_size_original, " to ", sparse_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg); |
| |
| TORCH_CHECK(!shrinking_dense_dim, |
| "shrinking the size of dense dimensions (from ", dense_size_original, " to ", dense_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg); |
| } |
| |
| if ((!size.equals(sizes_)) || (sparse_dim != sparse_dim_) || (dense_dim != dense_dim_)) { |
| auto nnz = values().size(0); |
| std::vector<int64_t> values_size = {nnz}; |
| auto dense_size = size.slice(sparse_dim); |
| values_size.insert(values_size.end(), dense_size.begin(), dense_size.end()); |
| values_.resize_(values_size); |
| indices_.resize_({sparse_dim, nnz}); |
| } |
| |
| sizes_ = size.vec(); |
| sparse_dim_ = sparse_dim; |
| dense_dim_ = dense_dim; |
| refresh_numel(); |
| } |
| |
| // NOTE: this function will resize the sparse tensor and also set `indices` and `values` to empty. |
| void resize_and_clear_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "resize_and_clear_ is not allowed on Tensor created from .data or .detach()"); |
| TORCH_CHECK(sparse_dim + dense_dim == static_cast<int64_t>(size.size()), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size()); |
| |
| sizes_ = size.vec(); |
| sparse_dim_ = sparse_dim; |
| dense_dim_ = dense_dim; |
| |
| auto empty_indices = at::empty({sparse_dim, 0}, indices().options()); |
| std::vector<int64_t> values_size = {0}; |
| auto dense_size = sizes().slice(sparse_dim); |
| values_size.insert(values_size.end(), dense_size.begin(), dense_size.end()); |
| auto empty_values = at::empty(values_size, values().options()); |
| set_indices_and_values_unsafe(empty_indices, empty_values); |
| refresh_numel(); |
| } |
| |
| void set_coalesced(bool coalesced) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "set_coalesced is not allowed on Tensor created from .data or .detach()"); |
| coalesced_ = coalesced; |
| } |
| |
| // NOTE: this function is only used internally and not exposed to Python frontend |
| void set_nnz_and_narrow(int64_t new_nnz) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "set_nnz_and_narrow is not allowed on Tensor created from .data or .detach()"); |
| AT_ASSERT(new_nnz <= nnz()); |
| indices_ = indices_.narrow(1, 0, new_nnz); |
| values_ = values_.narrow(0, 0, new_nnz); |
| } |
| |
| // Takes indices and values and directly puts them into the sparse tensor, no copy. |
| // NOTE: this function is unsafe because it doesn't check whether any indices are |
| // out of boundaries of `sizes`, so it should ONLY be used where we know that the |
| // indices are guaranteed to be within bounds. |
| // This used to be called THSTensor_(_move) |
| // NB: This used to be able to avoid a refcount bump, but I was too lazy to |
| // make it happen |
| void set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values); |
| |
| /** |
| * Return a TensorImpl that is a shallow-copy of this TensorImpl. |
| * |
| * For usage of `version_counter` and `allow_tensor_metadata_change`, |
| * see NOTE [ TensorImpl Shallow-Copying ]. |
| */ |
| c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach( |
| const c10::VariableVersion& version_counter, |
| bool allow_tensor_metadata_change) const override { |
| auto impl = c10::make_intrusive<SparseTensorImpl>(type_id(), dtype()); |
| copy_tensor_metadata( |
| /*src_impl=*/this, |
| /*dest_impl=*/impl.get(), |
| /*version_counter=*/version_counter, |
| /*allow_tensor_metadata_change=*/allow_tensor_metadata_change); |
| impl->refresh_numel(); |
| return impl; |
| } |
| |
| /** |
| * Shallow-copies data from another TensorImpl into this TensorImpl. |
| * |
| * For why this function doesn't check this TensorImpl's `allow_tensor_metadata_change_`, |
| * see NOTE [ TensorImpl Shallow-Copying ]. |
| */ |
| void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override { |
| AT_ASSERT(has_compatible_shallow_copy_type(impl->type_id())); |
| auto sparse_impl = static_cast<const SparseTensorImpl*>(impl.get()); |
| copy_tensor_metadata( |
| /*src_impl=*/sparse_impl, |
| /*dest_impl=*/this, |
| /*version_counter=*/version_counter(), |
| /*allow_tensor_metadata_change=*/allow_tensor_metadata_change()); |
| refresh_numel(); |
| } |
| private: |
| explicit SparseTensorImpl(at::TensorTypeId, const caffe2::TypeMeta&, at::Tensor indices, at::Tensor values); |
| |
| /** |
| * Copy the tensor metadata fields (e.g. sizes / strides / storage pointer / storage_offset) |
| * from one TensorImpl to another TensorImpl. |
| * |
| * For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE [ TensorImpl Shallow-Copying ]. |
| */ |
| static void copy_tensor_metadata( |
| const SparseTensorImpl* src_sparse_impl, |
| SparseTensorImpl* dest_sparse_impl, |
| const c10::VariableVersion& version_counter, |
| bool allow_tensor_metadata_change) { |
| TensorImpl::copy_tensor_metadata(src_sparse_impl, dest_sparse_impl, version_counter, allow_tensor_metadata_change); |
| |
| // Sparse-specific fields |
| dest_sparse_impl->sparse_dim_ = src_sparse_impl->sparse_dim(); |
| dest_sparse_impl->dense_dim_ = src_sparse_impl->dense_dim(); |
| dest_sparse_impl->indices_ = src_sparse_impl->indices(); |
| dest_sparse_impl->values_ = src_sparse_impl->values(); |
| dest_sparse_impl->coalesced_ = src_sparse_impl->coalesced(); |
| } |
| }; |
| |
| } // namespace at |