|  | from torch.distributions import constraints | 
|  | from torch.distributions.exponential import Exponential | 
|  | from torch.distributions.transformed_distribution import TransformedDistribution | 
|  | from torch.distributions.transforms import AffineTransform, ExpTransform | 
|  | from torch.distributions.utils import broadcast_all | 
|  |  | 
|  |  | 
|  | class Pareto(TransformedDistribution): | 
|  | r""" | 
|  | Samples from a Pareto Type 1 distribution. | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) | 
|  | >>> m.sample()  # sample from a Pareto distribution with scale=1 and alpha=1 | 
|  | tensor([ 1.5623]) | 
|  |  | 
|  | Args: | 
|  | scale (float or Tensor): Scale parameter of the distribution | 
|  | alpha (float or Tensor): Shape parameter of the distribution | 
|  | """ | 
|  | arg_constraints = {'alpha': constraints.positive, 'scale': constraints.positive} | 
|  |  | 
|  | def __init__(self, scale, alpha, validate_args=None): | 
|  | self.scale, self.alpha = broadcast_all(scale, alpha) | 
|  | base_dist = Exponential(self.alpha) | 
|  | transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)] | 
|  | super(Pareto, self).__init__(base_dist, transforms, validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(Pareto, _instance) | 
|  | new.scale = self.scale.expand(batch_shape) | 
|  | new.alpha = self.alpha.expand(batch_shape) | 
|  | return super(Pareto, self).expand(batch_shape, _instance=new) | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | # mean is inf for alpha <= 1 | 
|  | a = self.alpha.clamp(min=1) | 
|  | return a * self.scale / (a - 1) | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | # var is inf for alpha <= 2 | 
|  | a = self.alpha.clamp(min=2) | 
|  | return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2)) | 
|  |  | 
|  | @constraints.dependent_property | 
|  | def support(self): | 
|  | return constraints.greater_than(self.scale) | 
|  |  | 
|  | def entropy(self): | 
|  | return ((self.scale / self.alpha).log() + (1 + self.alpha.reciprocal())) |