| import math | 
 | from torch._six import inf, nan | 
 | from numbers import Number | 
 |  | 
 | import torch | 
 | from torch.distributions import constraints | 
 | from torch.distributions.distribution import Distribution | 
 | from torch.distributions.utils import broadcast_all | 
 |  | 
 |  | 
 | class Cauchy(Distribution): | 
 |     r""" | 
 |     Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of | 
 |     independent normally distributed random variables with means `0` follows a | 
 |     Cauchy distribution. | 
 |  | 
 |     Example:: | 
 |  | 
 |         >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) | 
 |         >>> m.sample()  # sample from a Cauchy distribution with loc=0 and scale=1 | 
 |         tensor([ 2.3214]) | 
 |  | 
 |     Args: | 
 |         loc (float or Tensor): mode or median of the distribution. | 
 |         scale (float or Tensor): half width at half maximum. | 
 |     """ | 
 |     arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} | 
 |     support = constraints.real | 
 |     has_rsample = True | 
 |  | 
 |     def __init__(self, loc, scale, validate_args=None): | 
 |         self.loc, self.scale = broadcast_all(loc, scale) | 
 |         if isinstance(loc, Number) and isinstance(scale, Number): | 
 |             batch_shape = torch.Size() | 
 |         else: | 
 |             batch_shape = self.loc.size() | 
 |         super(Cauchy, self).__init__(batch_shape, validate_args=validate_args) | 
 |  | 
 |     def expand(self, batch_shape, _instance=None): | 
 |         new = self._get_checked_instance(Cauchy, _instance) | 
 |         batch_shape = torch.Size(batch_shape) | 
 |         new.loc = self.loc.expand(batch_shape) | 
 |         new.scale = self.scale.expand(batch_shape) | 
 |         super(Cauchy, new).__init__(batch_shape, validate_args=False) | 
 |         new._validate_args = self._validate_args | 
 |         return new | 
 |  | 
 |     @property | 
 |     def mean(self): | 
 |         return torch.full(self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device) | 
 |  | 
 |     @property | 
 |     def variance(self): | 
 |         return torch.full(self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device) | 
 |  | 
 |     def rsample(self, sample_shape=torch.Size()): | 
 |         shape = self._extended_shape(sample_shape) | 
 |         eps = self.loc.new(shape).cauchy_() | 
 |         return self.loc + eps * self.scale | 
 |  | 
 |     def log_prob(self, value): | 
 |         if self._validate_args: | 
 |             self._validate_sample(value) | 
 |         return -math.log(math.pi) - self.scale.log() - (1 + ((value - self.loc) / self.scale)**2).log() | 
 |  | 
 |     def cdf(self, value): | 
 |         if self._validate_args: | 
 |             self._validate_sample(value) | 
 |         return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5 | 
 |  | 
 |     def icdf(self, value): | 
 |         if self._validate_args: | 
 |             self._validate_sample(value) | 
 |         return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc | 
 |  | 
 |     def entropy(self): | 
 |         return math.log(4 * math.pi) + self.scale.log() |