| #include "caffe2/operators/thresholded_relu_op.h" | 
 |  | 
 | #include "caffe2/utils/eigen_utils.h" | 
 | #include "caffe2/utils/math.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | template <> | 
 | bool ThresholdedReluOp<float, CPUContext>::RunOnDevice() { | 
 |   auto& X = Input(0); | 
 |  | 
 |   auto* Y = Output(0, X.sizes(), at::dtype<float>()); | 
 |  | 
 |   ConstEigenVectorArrayMap<float> Xvec(X.data<float>(), X.numel()); | 
 |   EigenVectorArrayMap<float> Yvec( | 
 |       Y->template mutable_data<float>(), Y->numel()); | 
 |   Yvec = (Xvec > alpha_).select(Xvec, 0.f); | 
 |   /* Naive implementation | 
 |   const float* Xdata = X.data<float>(); | 
 |   float* Ydata = Y->template mutable_data<float>(); | 
 |   for (int i = 0; i < X.size(); ++i) { | 
 |     Xdata[i] -= alpha_; | 
 |     Ydata[i] = std::max(Xdata[i], 0.0f); | 
 |   } | 
 |   */ | 
 |   return true; | 
 | } | 
 |  | 
 | template <> | 
 | bool ThresholdedReluGradientOp<float, CPUContext>::RunOnDevice() { | 
 |   auto& Y = Input(0); | 
 |   auto& dY = Input(1); | 
 |  | 
 |   CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); | 
 |   auto* dX = Output(0, Y.sizes(), at::dtype<float>()); | 
 |  | 
 |   const float* Ydata = Y.data<float>(); | 
 |   const float* dYdata = dY.data<float>(); | 
 |   float* dXdata = dX->template mutable_data<float>(); | 
 |   EigenVectorArrayMap<float> dXvec(dXdata, dX->numel()); | 
 |   ConstEigenVectorArrayMap<float> Yvec(Ydata, Y.numel()); | 
 |   ConstEigenVectorArrayMap<float> dYvec(dYdata, dY.numel()); | 
 |   dXvec = dYvec * Yvec.cwiseSign(); | 
 |   /* Non vectorized implementation | 
 |   for (int i = 0; i < Y.size(); ++i) { | 
 |     dXdata[i] = Ydata[i] > 0 ? dYdata[i] : 0; | 
 |   } | 
 |   */ | 
 |   return true; | 
 | } | 
 |  | 
 | REGISTER_CPU_OPERATOR(ThresholdedRelu, ThresholdedReluOp<float, CPUContext>); | 
 | REGISTER_CPU_OPERATOR( | 
 |     ThresholdedReluGradient, | 
 |     ThresholdedReluGradientOp<float, CPUContext>); | 
 |  | 
 | // Input: X, output: Y | 
 | OPERATOR_SCHEMA(ThresholdedRelu) | 
 |     .NumInputs(1) | 
 |     .NumOutputs(1) | 
 |     .AllowInplace({{0, 0}}) | 
 |     .CostInferenceFunction(PointwiseCostInference<2>) | 
 |     .IdenticalTypeAndShape() | 
 |     .SetDoc(R"DOC( | 
 | ThresholdedRelu takes one input data (Tensor) and produces one output data | 
 | (Tensor) where the rectified linear function, y = x for x > alpha, y = 0 | 
 | otherwise, is applied to the tensor elementwise. | 
 | )DOC") | 
 |     .Arg("alpha", "(float) defaults to 1.0.") | 
 |     .Input(0, "X", "1D input tensor") | 
 |     .Output(0, "Y", "1D input tensor"); | 
 |  | 
 | // Input: Y, dY, output: dX | 
 | OPERATOR_SCHEMA(ThresholdedReluGradient) | 
 |     .NumInputs(2) | 
 |     .NumOutputs(1) | 
 |     .AllowInplace({{1, 0}}) | 
 |     .SetDoc(R"DOC( | 
 | ThresholdedReluGradient takes both Y and dY and uses this to update dX | 
 | according to the chain rule and derivatives of the rectified linear function. | 
 | )DOC"); | 
 |  | 
 | class GetThresholdedReluGradient : public GradientMakerBase { | 
 |   using GradientMakerBase::GradientMakerBase; | 
 |   vector<OperatorDef> GetGradientDefs() override { | 
 |     return SingleGradientDef( | 
 |         def_.type() + "Gradient", | 
 |         "", | 
 |         vector<string>{O(0), GO(0)}, | 
 |         vector<string>{GI(0)}); | 
 |   } | 
 | }; | 
 | REGISTER_GRADIENT(ThresholdedRelu, GetThresholdedReluGradient); | 
 |  | 
 | } // namespace caffe2 |