blob: 53d64aa73a3942154cbb2164bef36f359891eb30 [file] [log] [blame]
#include "elementwise_linear_op.h"
namespace caffe2 {
template<>
bool ElementwiseLinearOp<float, CPUContext>::RunOnDevice(){
const auto& X = Input(0);
const auto& a = Input(1);
const auto& b = Input(2);
auto* Y = Output(0);
CAFFE_ENFORCE(X.ndim() == 2, X.ndim());
CAFFE_ENFORCE(a.ndim() == 1, a.ndim());
CAFFE_ENFORCE(X.dim32(1) == a.dim32(0));
CAFFE_ENFORCE(a.dims() == b.dims());
Y->ResizeLike(X);
const float* X_data = X.data<float>();
const float* a_data = a.data<float>();
const float* b_data = b.data<float>();
float* Y_data = Y->mutable_data<float>();
const int N = X.dim32(0);
const int D = X.dim32(1);
int p = 0;
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
Y_data[p] = X_data[p] * a_data[d] + b_data[d];
p++;
}
}
return true;
}
template<>
bool ElementwiseLinearGradientOp<float, CPUContext>::RunOnDevice(){
const auto& g_o = Input(0);
const auto& X = Input(1);
const auto& a = Input(2);
CAFFE_ENFORCE(X.ndim() == 2, X.ndim());
CAFFE_ENFORCE(a.ndim() == 1, a.ndim());
CAFFE_ENFORCE(X.dim32(1) == a.dim32(0));
auto *g_X = Output(0);
auto *g_a = Output(1);
auto *g_b = Output(2);
g_X->ResizeLike(X);
g_a->ResizeLike(a);
g_b->ResizeLike(a);
const int N = X.dim32(0);
const int D = X.dim32(1);
const float* g_o_data = g_o.data<float>();
const float* X_data = X.data<float>();
const float* a_data = a.data<float>();
float* g_X_data = g_X->mutable_data<float>();
float* g_a_data = g_a->mutable_data<float>();
float* g_b_data = g_b->mutable_data<float>();
math::Set<float, CPUContext>(g_a->size(), 0.f, g_a_data, &context_);
math::Set<float, CPUContext>(g_b->size(), 0.f, g_b_data, &context_);
int p = 0;
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
g_X_data[p] = g_o_data[p] * a_data[d];
g_a_data[d] += g_o_data[p] * X_data[p];
g_b_data[d] += g_o_data[p];
p++;
}
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(
ElementwiseLinear,
ElementwiseLinearOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
ElementwiseLinearGradient,
ElementwiseLinearGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(ElementwiseLinear)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
Given inputs X of size (N x D), a of size D and b of size D,
the op computes Y of size (N X D) where Y_{nd} = X_{nd} * a_d + b_d
)DOC")
.Input(0, "X", "2D input tensor of size (N X D) data")
.Input(1, "a", "1D scaling factors of size D")
.Input(2, "b", "1D biases of size D")
.Output(0, "Y", "2D output tensor");
OPERATOR_SCHEMA(ElementwiseLinearGradient)
.NumInputs(3)
.NumOutputs(3);
struct GetElementwiseLinearGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ElementwiseLinearGradient",
"",
vector<string>{GO(0), I(0), I(1)},
vector<string>{GI(0), GI(1), GI(2)});
}
};
REGISTER_GRADIENT(
ElementwiseLinear,
GetElementwiseLinearGradient
);
} // namespace
} // namespace caffe2