blob: 8d2c1c2fd33f72a33ff62df4168e3e3eb2cff15c [file] [log] [blame]
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
namespace {
template <class Context>
class BooleanUnmaskOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
BooleanUnmaskOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {}
bool RunOnDevice() override {
int maskSize = Input(0).size();
int numMasks = InputSize() / 2;
auto* valuesOut = Output(0);
auto& valueMeta = Input(1).meta();
validateInput(numMasks, maskSize);
valuesOut->Resize(maskSize);
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueMeta);
std::vector<int> nextValueIndices(maskSize, 0);
for (int maskOffset = 0; maskOffset < maskSize; ++maskOffset) {
bool maskFound = false;
for (int maskIndex = 0; maskIndex < numMasks; ++maskIndex) {
auto& mask = Input(maskIndex * 2);
auto& values = Input(maskIndex * 2 + 1);
const auto* maskPtr = mask.template data<bool>();
const auto* valuesPtr = (char*)values.raw_data();
if (maskPtr[maskOffset]) {
auto& valueIndex = nextValueIndices[maskIndex];
CAFFE_ENFORCE_LT(valueIndex, values.size());
auto* src = valuesPtr + (valueIndex++) * valueMeta.itemsize();
auto* dst = valuesOutPtr + maskOffset * valueMeta.itemsize();
std::copy(src, src + valueMeta.itemsize(), dst);
maskFound = true;
break;
}
}
CAFFE_ENFORCE(maskFound);
}
// check all indices match value length
for (int i = 0; i < numMasks; ++i) {
auto& values = Input(i * 2 + 1);
CAFFE_ENFORCE_EQ(values.size(), nextValueIndices[i]);
}
return true;
}
private:
void validateInput(int numMasks, int maskSize) {
for (int i = 0; i < numMasks; ++i) {
auto& mask = Input(2 * i);
auto& values = Input(2 * i + 1);
CAFFE_ENFORCE_EQ(mask.ndim(), 1);
CAFFE_ENFORCE_EQ(mask.size(), maskSize);
CAFFE_ENFORCE_EQ(values.ndim(), 1);
}
}
};
REGISTER_CPU_OPERATOR(BooleanUnmask, BooleanUnmaskOp<CPUContext>);
OPERATOR_SCHEMA(BooleanUnmask)
.NumInputs([](int n) { return n > 0 && n % 2 == 0; })
.NumOutputs(1)
.SetDoc(R"DOC(
Given a series of mask and values, reconstruct values together according
to masks.
A comprehensive example:
mask1 = True, False, True, False, False
values1 = 1.0, 3.0
mask2 = False, True, False, False, False
values2 = 2.0
mask3 = False, False, False, True, True
values3 = 4.0, 5.0
Reconstruct by:
output = net.BooleanUnmask([mask1, values1, mask2, values2, mask3, values3], ["output"])
We get:
output = 1.0, 2.0, 3.0, 4.0, 5.0
Note that for all mask positions, there must be at least one True. If for a
field there are multiple True's, we will accept the first value. For example:
Example 1:
mask1 = True, False
values1 = 1.0
mask2 = False, False
values2 =
This is not allowed:
output = net.BooleanUnmask([mask1, values1, mask2, values2], ["output"])
Example 2:
mask1 = True, False
values1 = 1.0
mask2 = True, True
values2 = 2.0, 2.0
output = net.BooleanUnmask([mask1, values1, mask2, values2], ["output"])
We get:
output = 1.0, 2.0
)DOC")
.Output(0, "unmasked_data", "The final reconstructed unmasked data");
NO_GRADIENT(BooleanUnmask)
}
}