blob: 20dd12685286e6bc8352c435411dad15a79a215b [file] [log] [blame]
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/SpatialFullConvolution.c"
#else
static void THNN_(im2col)(const real* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
real* data_col) {
const int height_col = (height + 2 * pad_h -
(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_col = (width + 2 * pad_w -
(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
const int channels_col = channels * kernel_h * kernel_w;
for (int c_col = 0; c_col < channels_col; ++c_col) {
int w_offset = c_col % kernel_w;
int h_offset = (c_col / kernel_w) % kernel_h;
int c_im = c_col / kernel_h / kernel_w;
for (int h_col = 0; h_col < height_col; ++h_col) {
for (int w_col = 0; w_col < width_col; ++w_col) {
int h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
int w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
data_col[(c_col * height_col + h_col) * width_col + w_col] =
(h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) ?
data_im[(c_im * height + h_im) * width + w_im] : 0;
}
}
}
}
static void THNN_(col2im)(const real* data_col, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
real* data_im) {
memset(data_im, 0, sizeof(real) * height * width * channels);
const int height_col = (height + 2 * pad_h -
(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_col = (width + 2 * pad_w -
(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
const int channels_col = channels * kernel_h * kernel_w;
for (int c_col = 0; c_col < channels_col; ++c_col) {
int w_offset = c_col % kernel_w;
int h_offset = (c_col / kernel_w) % kernel_h;
int c_im = c_col / kernel_h / kernel_w;
for (int h_col = 0; h_col < height_col; ++h_col) {
for (int w_col = 0; w_col < width_col; ++w_col) {
int h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
int w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
if (h_im >= 0 && h_im < height && w_im >= 0 && w_im < width)
data_im[(c_im * height + h_im) * width + w_im] +=
data_col[(c_col * height_col + h_col) * width_col + w_col];
}
}
}
}
void THNN_(SpatialFullConvolution_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output,
THTensor *weight,
THTensor *bias,
THTensor *columns,
THTensor *ones,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH)
{
int nInputPlane = THTensor_(size)(weight,0);
int nOutputPlane = THTensor_(size)(weight,1);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
THArgCheck(input->size[0] == nInputPlane, 2, "input channels and nInputPlane dont match");
// Force batch
batch = 0;
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
} else {
THArgCheck(input->size[1] == nInputPlane, 2, "input channels and nInputPlane dont match");
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Resize output
THTensor_(resize4d)(output, batchSize, nOutputPlane, outputHeight, outputWidth);
// Resize temporary columns
THTensor_(resize2d)(columns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Define a buffer of ones, for bias accumulation
// Note: this buffer can be shared with other modules, it only ever gets increased,
// and always contains ones.
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
// Resize plane and fill with ones...
THTensor_(resize2d)(ones, outputHeight, outputWidth);
THTensor_(fill)(ones, 1);
}
// Helpers
THTensor *input_n = THTensor_(new)();
THTensor *output_n = THTensor_(new)();
int elt;
// For each elt in batch, do:
for (elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
THTensor_(select)(input_n, input, 0, elt);
THTensor_(select)(output_n, output, 0, elt);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m = weight->size[1] * weight->size[2] * weight->size[3];
long n = columns->size[1];
long k = weight->size[0];
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THBlas_(gemm)(
'n', 't',
n, m, k,
1,
THTensor_(data)(input_n), n,
THTensor_(data)(weight), m,
0,
THTensor_(data)(columns), n
);
// Unpack columns back into input:
THNN_(col2im)(
THTensor_(data)(columns),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
1, 1,
THTensor_(data)(output_n)
);
// Do Bias after:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m_ = nOutputPlane;
long n_ = outputHeight * outputWidth;
long k_ = 1;
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THBlas_(gemm)(
't', 'n',
n_, m_, k_,
1,
THTensor_(data)(ones), k_,
THTensor_(data)(bias), k_,
1,
THTensor_(data)(output_n), n_
);
}
// Free
THTensor_(free)(input_n);
THTensor_(free)(output_n);
// Resize output
if (batch == 0) {
THTensor_(resize3d)(output, nOutputPlane, outputHeight, outputWidth);
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
}
}
void THNN_(SpatialFullConvolution_updateGradInput)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *weight,
THTensor *gradColumns,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH)
{
int nInputPlane = THTensor_(size)(weight,0);
int nOutputPlane = THTensor_(size)(weight,1);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
// Force batch
batch = 0;
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Resize output
THTensor_(resize4d)(gradInput, batchSize, nInputPlane, inputHeight, inputWidth);
// Resize temporary columns
THTensor_(resize2d)(gradColumns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Helpers
THTensor *gradInput_n = THTensor_(new)();
THTensor *gradOutput_n = THTensor_(new)();
int elt;
// For each elt in batch, do:
for (elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per sample:
THTensor_(select)(gradInput_n, gradInput, 0, elt);
THTensor_(select)(gradOutput_n, gradOutput, 0, elt);
// Extract columns:
THNN_(im2col)(
THTensor_(data)(gradOutput_n),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
1, 1,
THTensor_(data)(gradColumns)
);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m = weight->size[0];
long n = gradColumns->size[1];
long k = weight->size[1] * weight->size[2] * weight->size[3];
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THBlas_(gemm)(
'n', 'n',
n, m, k,
1,
THTensor_(data)(gradColumns), n,
THTensor_(data)(weight), k,
0,
THTensor_(data)(gradInput_n), n
);
}
// Free
THTensor_(free)(gradInput_n);
THTensor_(free)(gradOutput_n);
// Resize output
if (batch == 0) {
THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth);
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
THTensor_(resize3d)(gradInput, nInputPlane, inputHeight, inputWidth);
}
}
void THNN_(SpatialFullConvolution_accGradParameters)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *gradWeight,
THTensor *gradBias,
THTensor *columns,
THTensor *ones,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH,
real scale)
{
int nInputPlane = THTensor_(size)(gradWeight,0);
int nOutputPlane = THTensor_(size)(gradWeight,1);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
// Force batch
batch = 0;
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Define a buffer of ones, for bias accumulation
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
// Resize plane and fill with ones...
THTensor_(resize2d)(ones, outputHeight, outputWidth);
THTensor_(fill)(ones, 1);
}
// Resize temporary columns
THTensor_(resize2d)(columns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Helpers
THTensor *input_n = THTensor_(new)();
THTensor *gradOutput_n = THTensor_(new)();
int elt;
// For each elt in batch, do:
for (elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
THTensor_(select)(input_n, input, 0, elt);
THTensor_(select)(gradOutput_n, gradOutput, 0, elt);
// Extract columns:
THNN_(im2col)(
THTensor_(data)(gradOutput_n),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
1, 1,
THTensor_(data)(columns)
);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long n = columns->size[0]; // nOutputPlane * kh * kw
long m = input_n->size[0]; // nInputPlane
long k = columns->size[1]; // inputHeight * inputWidth
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THBlas_(gemm)(
't', 'n',
n, m, k,
scale,
THTensor_(data)(columns), k,
THTensor_(data)(input_n), k,
1,
THTensor_(data)(gradWeight), n
);
// Do Bias:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m_ = nOutputPlane;
long k_ = outputHeight * outputWidth;
// Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices)
THBlas_(gemv)(
't',
k_, m_,
scale,
THTensor_(data)(gradOutput_n), k_,
THTensor_(data)(ones), 1,
1,
THTensor_(data)(gradBias), 1
);
}
// Free
THTensor_(free)(input_n);
THTensor_(free)(gradOutput_n);
// Resize
if (batch == 0) {
THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth);
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
}
}
#endif