blob: 70050cf8ba99cdfa3c3080ebfdffcec794dbcdb3 [file] [log] [blame]
"""Script to generate baseline values from PyTorch optimization algorithms"""
import argparse
import math
import torch
import torch.optim
HEADER = """
#include <torch/tensor.h>
#include <vector>
namespace expected_parameters {
"""
FOOTER = "} // namespace expected_parameters"
PARAMETERS = "static std::vector<std::vector<torch::Tensor>> {} = {{"
OPTIMIZERS = {
"Adam": lambda p: torch.optim.Adam(p, 1.0, weight_decay=1e-6),
"Adagrad": lambda p: torch.optim.Adagrad(p, 1.0, weight_decay=1e-6, lr_decay=1e-3),
"RMSprop": lambda p: torch.optim.RMSprop(p, 0.1, momentum=0.9, weight_decay=1e-6),
"SGD": lambda p: torch.optim.SGD(p, 0.1, momentum=0.9, weight_decay=1e-6),
}
def weight_init(module):
if isinstance(module, torch.nn.Linear):
stdev = 1.0 / math.sqrt(module.weight.size(1))
for p in module.parameters():
p.data.uniform_(-stdev, stdev)
def run(optimizer_name, iterations, sample_every):
torch.manual_seed(0)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
)
model = model.to(torch.float64).apply(weight_init)
optimizer = OPTIMIZERS[optimizer_name](model.parameters())
input = torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], dtype=torch.float64)
values = []
for i in range(iterations):
optimizer.zero_grad()
output = model.forward(input)
loss = output.sum()
loss.backward()
optimizer.step()
if i % sample_every == 0:
values.append(
[p.clone().flatten().data.numpy() for p in model.parameters()]
)
return values
def emit(optimizer_parameter_map):
# Don't write generated with an @ in front, else this file is recognized as generated.
print("// @{} from {}".format('generated', __file__))
print(HEADER)
for optimizer_name, parameters in optimizer_parameter_map.items():
print(PARAMETERS.format(optimizer_name))
for sample in parameters:
print(" {")
for parameter in sample:
parameter_values = "{{{}}}".format(", ".join(map(str, parameter)))
print(" torch::tensor({}),".format(parameter_values))
print(" },")
print("};\n")
print(FOOTER)
def main():
parser = argparse.ArgumentParser(
"Produce optimization output baseline from PyTorch"
)
parser.add_argument("-i", "--iterations", default=1001, type=int)
parser.add_argument("-s", "--sample-every", default=100, type=int)
options = parser.parse_args()
optimizer_parameter_map = {}
for optimizer in ["Adam", "Adagrad", "RMSprop", "SGD"]:
optimizer_parameter_map[optimizer] = run(
optimizer, options.iterations, options.sample_every
)
emit(optimizer_parameter_map)
if __name__ == "__main__":
main()