blob: b919485b8ac63e1e97444760490a1b29f78abb44 [file] [log] [blame]
## @package lstm_benchmark
# Module caffe2.python.lstm_benchmark
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.proto import caffe2_pb2
from caffe2.python import cnn, workspace, core, utils, rnn_cell
import argparse
import numpy as np
import time
import logging
logging.basicConfig()
log = logging.getLogger("lstm_bench")
log.setLevel(logging.DEBUG)
def generate_data(T, shape, num_labels):
'''
Fill a queue with input data
'''
log.info("Generating T={} sequence batches".format(T))
generate_input_init_net = core.Net('generate_input_init')
queue = generate_input_init_net.CreateBlobsQueue(
[], "inputqueue", num_blobs=1, capacity=T,
)
label_queue = generate_input_init_net.CreateBlobsQueue(
[], "labelqueue", num_blobs=1, capacity=T,
)
workspace.RunNetOnce(generate_input_init_net)
generate_input_net = core.Net('generate_input')
generate_input_net.EnqueueBlobs([queue, "scratch"], ["scratch"])
generate_input_net.EnqueueBlobs([label_queue, "label_scr"], ["label_scr"])
np.random.seed(2603)
for t in range(T):
if (t % (max(10, T // 10)) == 0):
print("Generating data {}/{}".format(t, T))
# Randomize the seqlength
random_shape = (
[np.random.randint(1, shape[0])] + shape[1:]
if t > 0 else shape
)
X = np.random.rand(*random_shape).astype(np.float32)
batch_size = random_shape[1]
L = num_labels * batch_size
labels = (np.random.rand(random_shape[0]) * L).astype(np.int32)
workspace.FeedBlob("scratch", X)
workspace.FeedBlob("label_scr", labels)
workspace.RunNetOnce(generate_input_net.Proto())
log.info("Finished data generation")
return queue, label_queue
def create_model(args, queue, label_queue, input_shape):
model = cnn.CNNModelHelper(name="LSTM_bench")
seq_lengths, target = \
model.net.AddExternalInputs(
'seq_lengths',
'target',
)
input_blob = model.DequeueBlobs(queue, "input_data")
labels = model.DequeueBlobs(label_queue, "label")
init_blobs = []
if args.implementation == "own":
for i in range(args.num_layers):
init_blobs.append("hidden_init_{}".format(i))
init_blobs.append("cell_init_{}".format(i))
model.net.AddExternalInputs(init_blobs)
output, last_hidden, _, last_state = rnn_cell.LSTM(
model=model,
input_blob=input_blob,
seq_lengths=seq_lengths,
initial_states=init_blobs,
dim_in=args.input_dim,
dim_out=[args.hidden_dim] * args.num_layers,
scope="lstm1",
memory_optimization=args.memory_optimization,
forward_only=args.forward_only,
drop_states=True,
return_last_layer_only=True,
)
elif args.implementation == "cudnn":
# We need to feed a placeholder input so that RecurrentInitOp
# can infer the dimensions.
init_blobs = model.net.AddExternalInputs("hidden_init", "cell_init")
model.param_init_net.ConstantFill([], input_blob, shape=input_shape)
output, last_hidden, _ = rnn_cell.cudnn_LSTM(
model=model,
input_blob=input_blob,
initial_states=init_blobs,
dim_in=args.input_dim,
dim_out=args.hidden_dim,
scope="cudnnlstm",
num_layers=args.num_layers,
)
else:
assert False, "Unknown implementation"
weights = model.UniformFill(labels, "weights")
softmax, loss = model.SoftmaxWithLoss(
[model.Flatten(output), labels, weights],
['softmax', 'loss'],
)
if not args.forward_only:
model.AddGradientOperators([loss])
# carry states over
for init_blob in init_blobs:
model.net.Copy(last_hidden, init_blob)
sz = args.hidden_dim
if args.implementation == "cudnn":
sz *= args.num_layers
workspace.FeedBlob(init_blob, np.zeros(
[1, args.batch_size, sz], dtype=np.float32
))
return model, output
def Caffe2LSTM(args):
T = args.data_size // args.batch_size
input_blob_shape = [args.seq_length, args.batch_size, args.input_dim]
queue, label_queue = generate_data(T // args.seq_length,
input_blob_shape,
args.hidden_dim)
workspace.FeedBlob(
"seq_lengths",
np.array([args.seq_length] * args.batch_size, dtype=np.int32)
)
model, output = create_model(args, queue, label_queue, input_blob_shape)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
last_time = time.time()
start_time = last_time
num_iters = T // args.seq_length
entries_per_iter = args.seq_length * args.batch_size
total_iters = 0
# Run the Benchmark
log.info("------ Warming up ------")
workspace.RunNet(model.net.Proto().name)
num_iters = num_iters - 1
if (args.gpu):
log.info("Memory stats:")
stats = utils.GetGPUMemoryUsageStats()
log.info("GPU memory:\t{} MB".format(stats['max_total'] / 1024 / 1024))
log.info("------ Starting benchmark ------")
start_time = time.time()
for iteration in range(0, num_iters, args.iters_to_report):
iters_once = min(args.iters_to_report, num_iters - iteration)
total_iters += iters_once
workspace.RunNet(model.net.Proto().name, iters_once)
new_time = time.time()
log.info("Iter: {} / {}. Entries Per Second: {}k.". format(
iteration,
num_iters,
entries_per_iter * iters_once / (new_time - last_time) // 1000,
))
last_time = new_time
log.info("Done. Total EPS excluding 1st iteration: {}k".format(
total_iters * entries_per_iter / (time.time() - start_time) // 1000,
))
if (args.gpu):
log.info("Memory stats:")
stats = utils.GetGPUMemoryUsageStats()
log.info("GPU memory:\t{} MB".format(stats['max_total'] / 1024 / 1024))
if (stats['max_total'] != stats['total']):
log.warning(
"Max usage differs from current total usage: {} > {}".
format(stats['max_total'], stats['total'])
)
log.warning("This means that costly deallocations occured.")
return time.time() - start_time
def Benchmark(args):
return Caffe2LSTM(args)
def GetArgumentParser():
parser = argparse.ArgumentParser(description="LSTM benchmark.")
parser.add_argument(
"--hidden_dim",
type=int,
default=800,
help="Hidden dimension",
)
parser.add_argument(
"--input_dim",
type=int,
default=40,
help="Input dimension",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="The batch size."
)
parser.add_argument(
"--seq_length",
type=int,
default=20,
help="Max sequence length"
)
parser.add_argument(
"--data_size",
type=int,
default=10000000,
help="Number of data points to generate"
)
parser.add_argument(
"--iters_to_report",
type=int,
default=100,
help="Number of iteration to report progress"
)
parser.add_argument(
"--gpu",
action="store_true",
help="Run all on GPU",
)
parser.add_argument(
"--implementation",
type=str,
default="own",
help="'cudnn' or 'own'",
)
parser.add_argument(
"--memory_optimization",
action="store_true",
help="Whether to use memory optimized LSTM or not",
)
parser.add_argument(
"--forward_only",
action="store_true",
help="Whether to run only forward pass"
)
parser.add_argument(
"--num_layers",
type=int,
default=1,
help="Number of LSTM layers. All output dimensions are going to be"
"of hidden_dim size",
)
return parser
if __name__ == '__main__':
args = GetArgumentParser().parse_args()
workspace.GlobalInit([
'caffe2',
'--caffe2_log_level=0',
'--caffe2_print_blob_sizes_at_exit=0',
'--caffe2_gpu_memory_tracking=1'])
device = core.DeviceOption(
caffe2_pb2.CUDA if args.gpu else caffe2_pb2.CPU, 0)
with core.DeviceScope(device):
Benchmark(args)