blob: 0d4e0d28321e0bc3dfbf9918ee8e6bad4613a8b5 [file] [log] [blame]
from numbers import Number
import torch
from torch.autograd import Variable
def expand_n(v, n):
r"""
Cleanly expand float or Tensor or Variable parameters.
"""
if isinstance(v, Number):
return torch.Tensor([v]).expand(n, 1)
else:
return v.expand(n, *v.size())
def _broadcast_shape(shapes):
"""
Given a list of tensor sizes, returns the size of the resulting broadcasted
tensor.
Args:
shapes (list of torch.Size): list of tensor sizes
"""
shape = torch.Size([1])
for s in shapes:
shape = torch._C._infer_size(s, shape)
return shape
def broadcast_all(*values):
"""
Given a list of values (possibly containing numbers), returns a list where each
value is broadcasted based on the following rules:
- `torch.Tensor` and `torch.autograd.Variable` instances are broadcasted as
per the `broadcasting rules
<http://pytorch.org/docs/master/notes/broadcasting.html>`_
- numbers.Number instances (scalars) are upcast to Tensor/Variable having
the same size and type as the first tensor passed to `values`. If all the
values are scalars, then they are upcasted to `torch.Tensor` having size
`(1,)`.
Args:
values (list of `numbers.Number`, `torch.autograd.Variable` or
`torch.Tensor`)
Raises:
ValueError: if any of the values is not a `numbers.Number`, `torch.Tensor`
or `torch.autograd.Variable` instance
"""
values = list(values)
scalar_idxs = [i for i in range(len(values)) if isinstance(values[i], Number)]
tensor_idxs = [i for i in range(len(values)) if
torch.is_tensor(values[i]) or isinstance(values[i], Variable)]
if len(scalar_idxs) + len(tensor_idxs) != len(values):
raise ValueError('Input arguments must all be instances of numbers.Number, torch.Tensor or ' +
'torch.autograd.Variable.')
if tensor_idxs:
broadcast_shape = _broadcast_shape([values[i].size() for i in tensor_idxs])
for idx in tensor_idxs:
values[idx] = values[idx].expand(broadcast_shape)
template = values[tensor_idxs[0]]
for idx in scalar_idxs:
values[idx] = template.new(template.size()).fill_(values[idx])
else:
for idx in scalar_idxs:
values[idx] = torch.Tensor([values[idx]])
return values