| #include "torch/csrc/autograd/engine.h" |
| |
| #include "torch/csrc/autograd/grad_mode.h" |
| #include "torch/csrc/autograd/functions/basic_ops.h" |
| #include "torch/csrc/utils/auto_gpu.h" |
| |
| #include <atomic> |
| #include <condition_variable> |
| #include <cstdint> |
| #include <functional> |
| #include <iostream> |
| #include <mutex> |
| #include <set> |
| #include <string> |
| #include <thread> |
| #include <unordered_set> |
| #include <typeinfo> |
| #include <sstream> |
| #include <TH/TH.h> |
| |
| #ifdef WITH_CUDA |
| #include <cuda.h> |
| #include <THC/THC.h> |
| #endif |
| |
| namespace torch { namespace autograd { |
| |
| // NB: -1 indicates the CPU worker! |
| static constexpr int NO_DEVICE = -2; |
| static thread_local int worker_device = NO_DEVICE; |
| |
| // XXX: Changes to the way multithreading works in execute should be done with |
| // great care. Right now the implementation guarantees that a single function's |
| // apply will never be entered concurrently (even if multiple graphs are |
| // executed at the same time). Adding multiple threads per-device or removing |
| // engine thread affinity to the device can break this invariant, and we depend |
| // on it in a few places (e.g. AccumulateGrad function). |
| |
| struct FunctionTask { |
| GraphTask* base; |
| std::shared_ptr<Function> fn; |
| // This buffer serves as an implicit "addition" node for all of the |
| // gradients flowing here. Once all the dependencies are finished, we |
| // use the contents of this buffer to run the function. |
| InputBuffer inputs; |
| |
| FunctionTask(GraphTask* base, std::shared_ptr<Function> fn, InputBuffer inputs) |
| : base(base) |
| , fn(fn) |
| , inputs(std::move(inputs)) {} |
| }; |
| |
| struct ReadyQueue { |
| std::deque<FunctionTask> queue; |
| std::condition_variable not_empty; |
| std::mutex mutex; |
| |
| void push_front(FunctionTask item); |
| FunctionTask pop_back(); |
| }; |
| |
| struct GraphTask { |
| std::exception_ptr exception; |
| // Indicates if an error occurred while executing any task. When this is |
| // true, it signals all threads to stop executing. |
| std::atomic_bool has_error; |
| std::atomic<uint64_t> outstanding_tasks; |
| bool keep_graph; |
| bool grad_mode; |
| |
| std::mutex mutex; |
| // Notified when a task finishes executing. Check outstanding_tasks to see |
| // if all tasks are done. |
| std::condition_variable not_done; |
| const Engine::pre_callback_map& pre_callbacks; |
| const Engine::post_callback_map& post_callbacks; |
| std::unordered_map<Function*, InputBuffer> not_ready; |
| std::unordered_map<Function*, int> dependencies; |
| |
| int owner; |
| |
| GraphTask(bool keep_graph, bool grad_mode, const Engine::pre_callback_map& pre_callbacks, const Engine::post_callback_map& post_callbacks) |
| : exception() |
| , has_error(false) |
| , outstanding_tasks(0) |
| , keep_graph(keep_graph) |
| , grad_mode(grad_mode) |
| , mutex() |
| , not_done() |
| , pre_callbacks(pre_callbacks) |
| , post_callbacks(post_callbacks) |
| , not_ready() |
| , dependencies() |
| , owner(NO_DEVICE) {} |
| }; |
| |
| auto ReadyQueue::push_front(FunctionTask item) -> void { |
| { |
| std::lock_guard<std::mutex> lock(mutex); |
| ++item.base->outstanding_tasks; |
| queue.push_front(std::move(item)); |
| } |
| not_empty.notify_one(); |
| } |
| |
| auto ReadyQueue::pop_back() -> FunctionTask { |
| std::unique_lock<std::mutex> lock(mutex); |
| not_empty.wait(lock, [this]{ return !queue.empty(); }); |
| auto task = std::move(queue.back()); queue.pop_back(); |
| return task; |
| } |
| |
| Engine::Engine() : ready_queues() { |
| } |
| |
| // This Engine's ReadyQueues and their corresponding threads are leaked here |
| Engine::~Engine() = default; |
| |
| auto Engine::thread_init(int device) -> void { |
| THInferNumThreads(); |
| AutoGPU guard(device); |
| worker_device = device; |
| thread_main(nullptr); |
| } |
| |
| // NOTE: graph_tasks do not necessarily form a stack. Imagine this |
| // case: |
| // |
| // +----> Eval1 |
| // Root |
| // +----> Eval2 |
| // |
| // Once Root is executed, both Eval1 and Eval2 are added to the ready queue. |
| // Next, Eval1 is run and this causes the worker to enter thread_main again. |
| // Then, it pops the next task from the queue, but at this point it is Eval2. |
| // It enters thread_main once again, but now with graph_task of Eval2, which is |
| // completely unrelated to that of Eval1 (it's not a recursive call). |
| // It's all ok and is handled right now, but it should be accounted for |
| // in case this code is to be changed. |
| auto Engine::thread_main(GraphTask *graph_task) -> void { |
| auto queue = ready_queues[worker_device + 1]; |
| while (!graph_task || graph_task->outstanding_tasks > 0) { |
| FunctionTask task = queue->pop_back(); |
| if (task.fn && !task.base->has_error.load()) { |
| GradMode::set_enabled(task.base->grad_mode); |
| try { |
| evaluate_function(task); |
| } catch (std::exception& e) { |
| thread_on_exception(task, e); |
| } |
| } |
| auto base_owner = task.base->owner; |
| // Task from a non-worker thread. Easy case. |
| if (base_owner == NO_DEVICE) { |
| if (--task.base->outstanding_tasks == 0) { |
| std::lock_guard<std::mutex> lock(task.base->mutex); |
| task.base->not_done.notify_all(); |
| } |
| } else { |
| // If it's a task initiated from this thread, decrease the counter, but |
| // don't do anything - loop condition will do all checks for us next. |
| if (base_owner == worker_device) { |
| --task.base->outstanding_tasks; |
| // Otherwise send a dummy function task to the owning thread just to |
| // ensure that it's not sleeping. If it has work, it might see that |
| // graph_task->outstanding_tasks == 0 before it gets to the task, but |
| // it's a no-op anyway. |
| } else if (base_owner != worker_device) { |
| if (--task.base->outstanding_tasks == 0) { |
| // Synchronize outstanding_tasks with queue mutex |
| std::atomic_thread_fence(std::memory_order_release); |
| ready_queue(base_owner).push_front(FunctionTask(task.base, nullptr, InputBuffer(0))); |
| } |
| } |
| } |
| } |
| } |
| |
| auto Engine::thread_on_exception(FunctionTask& task, std::exception& e) -> void { |
| std::lock_guard<std::mutex> lock(task.base->mutex); |
| if (!task.base->has_error.load()) { |
| task.base->exception = std::current_exception(); |
| task.base->has_error = true; |
| } |
| } |
| |
| static variable_list call_pre_hooks(Function& fn, variable_list inputs) { |
| for (auto& hook : fn.pre_hooks) { |
| inputs = (*hook)(inputs); |
| } |
| return inputs; |
| } |
| |
| static variable_list call_post_hooks(Function& fn, variable_list outputs, variable_list inputs) { |
| for (auto& hook : fn.post_hooks) { |
| outputs = (*hook)(outputs, inputs); |
| } |
| return outputs; |
| } |
| |
| static variable_list call_function(FunctionTask& task) { |
| auto& fn = *task.fn; |
| auto inputs = call_pre_hooks(fn, InputBuffer::variables(std::move(task.inputs))); |
| |
| auto& pre_callbacks = task.base->pre_callbacks; |
| for (auto it_p = pre_callbacks.equal_range(&fn); it_p.first != it_p.second; ++it_p.first) { |
| auto& callback = it_p.first->second; |
| if (!callback(&fn, inputs)) return variable_list(fn.next_functions.size()); |
| } |
| if(!task.base->keep_graph) { |
| fn.willReleaseVariables(); |
| } |
| auto outputs = fn(inputs); |
| |
| auto& post_callbacks = task.base->post_callbacks; |
| for (auto it_p = post_callbacks.equal_range(&fn); it_p.first != it_p.second; ++it_p.first) { |
| auto& callback = it_p.first->second; |
| if (!callback(&fn, inputs, outputs)) return variable_list(fn.next_functions.size()); |
| } |
| |
| return call_post_hooks(fn, std::move(outputs), std::move(inputs)); |
| } |
| |
| auto Engine::evaluate_function(FunctionTask& task) -> void { |
| auto outputs = call_function(task); |
| |
| auto& fn = *task.fn; |
| if (!task.base->keep_graph) { |
| fn.releaseVariables(); |
| } |
| |
| if (outputs.size() != fn.next_functions.size()) { |
| std::stringstream ss; |
| ss << "Function '" << fn.name() << "' returned an invalid number of outputs - expected "; |
| ss << fn.next_functions.size() << ", but got " << outputs.size(); |
| throw std::runtime_error(ss.str()); |
| } |
| |
| int num_outputs = outputs.size(); |
| if (num_outputs == 0) return; // Don't even acquire the mutex |
| std::lock_guard<std::mutex> lock(task.base->mutex); |
| for (int i = 0; i < num_outputs; ++i) { |
| auto& output = outputs[i]; |
| auto& next_fn = fn.next_functions[i].first; |
| int input_nr = fn.next_functions[i].second; |
| |
| if (!next_fn) { |
| continue; |
| } |
| |
| // Check if the next function is ready to be computed |
| bool is_ready = false; |
| auto& dependencies = task.base->dependencies; |
| auto it = dependencies.find(next_fn.get()); |
| if (it == dependencies.end()) { |
| auto name = next_fn->name(); |
| throw std::runtime_error(std::string("dependency not found for ") + name); |
| } else if (--it->second == 0) { |
| dependencies.erase(it); |
| is_ready = true; |
| } |
| |
| auto& not_ready = task.base->not_ready; |
| auto not_ready_it = not_ready.find(next_fn.get()); |
| if (not_ready_it == not_ready.end()) { |
| // No buffers have been allocated for the function |
| InputBuffer input_buffer(next_fn->num_inputs); |
| input_buffer.add(input_nr, std::move(output)); |
| if (is_ready) { |
| auto& queue = ready_queue(input_buffer.device()); |
| queue.push_front(FunctionTask(task.base, next_fn, std::move(input_buffer))); |
| } else { |
| not_ready.emplace(next_fn.get(), std::move(input_buffer)); |
| } |
| } else { |
| // The function already has a buffer |
| auto &input_buffer = not_ready_it->second; |
| input_buffer.add(input_nr, std::move(output)); |
| if (is_ready) { |
| auto& queue = ready_queue(input_buffer.device()); |
| queue.push_front(FunctionTask(task.base, next_fn, std::move(input_buffer))); |
| not_ready.erase(not_ready_it); |
| } |
| } |
| } |
| } |
| |
| /* Computes the number of dependencies for each function which requires grad */ |
| auto Engine::compute_dependencies(Function* root, GraphTask& task) -> void { |
| // Just to make sure that they will never be added to the queue again |
| std::unordered_set<Function*> seen; |
| std::vector<Function*> queue { root }; |
| |
| // Queue contains all nodes that will start propagating gradients. |
| // We no longer have to expand functions that don't require grad. |
| auto& dependencies = task.dependencies; |
| while (queue.size() > 0) { |
| auto fn = queue.back(); queue.pop_back(); |
| for (auto& edge : fn->next_functions) { |
| Function* next_ptr = edge.first.get(); |
| if (!next_ptr) continue; |
| dependencies[next_ptr] += 1; |
| bool inserted; |
| std::tie(std::ignore, inserted) = seen.insert(next_ptr); |
| if (inserted) queue.push_back(next_ptr); |
| } |
| } |
| } |
| |
| struct ClearCallbacks { |
| ClearCallbacks(std::vector<std::function<void()>>& callbacks, |
| std::mutex &callbacks_lock) |
| : callbacks(callbacks) |
| , callbacks_lock(callbacks_lock) { clear(); } |
| ~ClearCallbacks() { clear(); } |
| |
| void clear() { |
| std::lock_guard<std::mutex> lock(callbacks_lock); |
| callbacks.clear(); |
| } |
| |
| std::vector<std::function<void()>>& callbacks; |
| std::mutex& callbacks_lock; |
| }; |
| |
| auto Engine::execute(const function_list& input_roots, |
| const variable_list& inputs, |
| bool keep_graph, |
| bool create_graph, |
| const pre_callback_map& pre_callbacks, |
| const post_callback_map& post_callbacks) -> void { |
| std::call_once(start_threads_flag, &Engine::start_threads, this); |
| // Callbacks are only valid for the duration of this run and should always be cleared |
| ClearCallbacks _cb_guard(final_callbacks, post_callbacks_lock); |
| |
| GraphTask graph_task(keep_graph, create_graph, pre_callbacks, post_callbacks); |
| std::unique_lock<std::mutex> lock(graph_task.mutex); |
| |
| // Now compute the dependencies for all executable functions and queue the root |
| auto graph_root = std::make_shared<GraphRoot>(input_roots, inputs); |
| compute_dependencies(graph_root.get(), graph_task); |
| ready_queue(-1).push_front(FunctionTask(&graph_task, std::move(graph_root), InputBuffer(0))); |
| |
| // Not a worker |
| if (worker_device == NO_DEVICE) { |
| // Wait for all tasks to complete |
| graph_task.not_done.wait(lock, [&graph_task]{ |
| return graph_task.outstanding_tasks.load() == 0; |
| }); |
| } else { |
| graph_task.owner = worker_device; |
| lock.unlock(); |
| thread_main(&graph_task); |
| } |
| |
| // Check for an exception while running backwards |
| if (graph_task.has_error.load()) { |
| std::rethrow_exception(graph_task.exception); |
| } |
| |
| if (!graph_task.not_ready.empty()) { |
| throw std::runtime_error("could not compute gradients for some functions"); |
| } |
| |
| // Unlocking is necessary, because the callback can register |
| // more callbacks (or they can be registered from other threads |
| // while it's waiting. |
| std::unique_lock<std::mutex> cb_lock(post_callbacks_lock); |
| for (std::size_t i = 0; i < final_callbacks.size(); ++i) { |
| cb_lock.unlock(); |
| final_callbacks[i](); |
| cb_lock.lock(); |
| } |
| } |
| |
| void Engine::queue_callback(std::function<void()> callback) { |
| std::lock_guard<std::mutex> lock(post_callbacks_lock); |
| final_callbacks.emplace_back(std::move(callback)); |
| } |
| |
| auto Engine::ready_queue(int device) -> ReadyQueue& { |
| return *ready_queues.at(device + 1); |
| } |
| |
| auto Engine::start_threads() -> void { |
| int num_devices = 0; |
| #ifdef WITH_CUDA |
| // check for case of compiled with CUDA but no available devices |
| if (cudaGetDeviceCount(&num_devices) != cudaSuccess) { |
| cudaGetLastError(); |
| num_devices = 0; |
| } |
| #endif |
| // One for CPU, plus one for every GPU device |
| int num_threads = num_devices + 1; |
| ready_queues = std::vector<std::shared_ptr<ReadyQueue>>(num_threads); |
| for (auto& queue : ready_queues) |
| queue.reset(new ReadyQueue()); |
| for (int i = 0; i < num_threads; ++i) { |
| std::thread t(&Engine::thread_init, this, i - 1); |
| t.detach(); |
| } |
| } |
| |
| }} // namespace torch::autograd |