blob: 8042f6849028230b507ff5f6dd6d9c44e1aee2ae [file] [log] [blame]
#include "test.h"
bool test_optimizer_xor(Optimizer optim, std::shared_ptr<ContainerList> model) {
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
auto bs = 4U;
auto inp = at::CPU(at::kFloat).tensor({bs, 2});
auto lab = at::CPU(at::kFloat).tensor({bs});
for (auto i = 0U; i < bs; i++) {
auto a = std::rand() % 2;
auto b = std::rand() % 2;
auto c = a ^ b;
inp[i][0] = a;
inp[i][1] = b;
lab[i] = c;
}
// forward
auto x = Var(inp);
auto y = Var(lab, false);
for (auto layer : *model) x = layer->forward({x})[0].sigmoid_();
Variable loss = at::binary_cross_entropy(x, y);
optim->zero_grad();
backward(loss);
optim->step();
running_loss = running_loss * 0.99 + loss.data().sum().toCFloat() * 0.01;
if (epoch > 3000) {
return false;
}
epoch++;
}
return true;
}
CASE("optim/sgd") {
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = SGD(model, 1e-1).momentum(0.9).nesterov().weight_decay(1e-6).make();
EXPECT(test_optimizer_xor(optim, model));
}
CASE("optim/adagrad") {
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = Adagrad(model, 1.0).weight_decay(1e-6).lr_decay(1e-3).make();
EXPECT(test_optimizer_xor(optim, model));
}
CASE("optim/rmsprop") {
{
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = RMSprop(model, 1e-1).momentum(0.9).weight_decay(1e-6).make();
EXPECT(test_optimizer_xor(optim, model));
}
{
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = RMSprop(model, 1e-1).centered().make();
EXPECT(test_optimizer_xor(optim, model));
}
}
CASE("optim/adam") {
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = Adam(model, 1.0).weight_decay(1e-6).make();
EXPECT(test_optimizer_xor(optim, model));
}
CASE("optim/amsgrad") {
auto model = ContainerList()
.append(Linear(2, 8).make())
.append(Linear(8, 1).make())
.make();
auto optim = Adam(model, 0.1).weight_decay(1e-6).amsgrad().make();
EXPECT(test_optimizer_xor(optim, model));
}