blob: ad8e53ea7765f92cf952375f9ff46250b552c325 [file] [log] [blame]
import numpy as np
import torch
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
dtypes,
)
from torch.testing._internal.common_utils import (
TestCase,
run_tests,
gradcheck,
)
reductions = ["max", "mean", "min", "sum"]
class TestSegmentReductions(TestCase):
def _test_common(
self,
reduction,
device,
dtype,
unsafe,
axis,
initial_value,
data_arr,
lengths_arr,
expected_arr,
expected_grad_arr,
check_backward,
):
lengths = torch.tensor(lengths_arr, device=device)
data = torch.tensor(
data_arr,
device=device,
dtype=dtype,
requires_grad=True,
)
expected_result = torch.tensor(expected_arr, device=device, dtype=dtype)
expected_grad = torch.tensor(expected_grad_arr, device=device, dtype=dtype)
actual_result = torch.segment_reduce(
data=data,
reduce=reduction,
lengths=lengths,
axis=axis,
unsafe=unsafe,
initial=initial_value,
)
self.assertEqual(
expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True
)
if not check_backward:
return
# Test backward
actual_result.sum().backward()
self.assertEqual(
expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True
)
# gradcheck does not work well with bfloat16 or fp16 cpu types
# also there is small numerical difference with fp32
if dtype not in [torch.half, torch.bfloat16, torch.float]:
# gradcheck does not like "nan" input, setting to random 10
d_non_nan = np.nan_to_num(data_arr, nan=10)
data = torch.tensor(
# [10 if v == float("nan") else v for v in data],
d_non_nan,
device=device,
dtype=dtype,
requires_grad=True,
)
self.assertTrue(
gradcheck(
lambda x: torch.segment_reduce(
data=x,
reduce=reduction,
lengths=lengths,
axis=axis,
unsafe=unsafe,
initial=initial_value,
),
(data,),
)
)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_simple_1d(self, device, dtype):
lengths = [1, 2, 3, 0]
data = [1, float("nan"), 3, 4, 5, 5]
check_backward = True
for reduction in reductions:
if reduction == "max":
initial_value = 0
expected_result = [1, float("nan"), 5, initial_value]
expected_grad = [1, 1, 0, 0, 0.5, 0.5]
elif reduction == "mean":
initial_value = 0
expected_result = [1, float("nan"), 4.666, initial_value]
expected_grad = [1.0, 0.5, 0.5, 0.333, 0.333, 0.333]
elif reduction == "min":
initial_value = 1000 # some high number
expected_result = [1, float("nan"), 4, initial_value]
expected_grad = [1.0, 1.0, 0, 1, 0, 0]
elif reduction == "sum":
initial_value = 0
expected_result = [1, float("nan"), 14, initial_value]
expected_grad = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
for axis in [0, -1]:
for unsafe in [True, False]:
for initial in [initial_value, None]:
self._test_common(
reduction,
device,
dtype,
unsafe,
axis,
initial_value,
data,
lengths,
expected_result,
expected_grad,
check_backward,
)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_multi_d_simple(self, device, dtype):
check_backward = True
axis = 0
lengths = [1, 2, 3, 0]
data = [[1, 1], [float("nan"), 1], [3, float("nan")], [4, 1], [3, 2], [2, 3]]
for reduction in reductions:
if reduction == "max":
initial_value = 0
expected_result = [
[1, 1],
[float("nan"), float("nan")],
[4, 3],
[initial_value, initial_value],
]
expected_grad = [
[1, 1],
[1, 0],
[0, 1],
[1, 0],
[0, 0],
[0, 1],
]
elif reduction == "mean":
initial_value = 0
expected_result = [
[1, 1],
[float("nan"), float("nan")],
[3, 2],
[initial_value, initial_value],
]
expected_grad = [
[1.0, 1.0],
[0.5, 0.5],
[0.5, 0.5],
[0.333, 0.333],
[0.333, 0.333],
[0.333, 0.333],
]
elif reduction == "min":
initial_value = 1000 # some high number
expected_result = [
[1, 1],
[float("nan"), float("nan")],
[2, 1],
[initial_value, initial_value],
]
expected_grad = [
[1.0, 1.0],
[1, 0],
[0, 1],
[0, 1],
[0, 0],
[1, 0],
]
elif reduction == "sum":
initial_value = 0
expected_result = [
[1, 1],
[float("nan"), float("nan")],
[9, 6],
[initial_value, initial_value],
]
expected_grad = [
[1.0, 1.0],
[1.0, 1.0],
[1.0, 1.0],
[1.0, 1.0],
[1.0, 1.0],
[1.0, 1.0],
]
for unsafe in [True, False]:
for initial in [initial_value, None]:
self._test_common(
reduction,
device,
dtype,
unsafe,
axis,
initial_value,
data,
lengths,
expected_result,
expected_grad,
check_backward,
)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_multi_d(self, device, dtype):
axis = 0
lengths = [0, 2]
data = np.arange(20).reshape(2, 2, 5).tolist()
expected_grad = []
# TODO: calculate grad and check correctness
check_backward = False
for reduction in reductions:
if reduction == "max":
initial_value = 0
expected_result = [
np.full((2, 5), initial_value).tolist(),
np.max(data, axis=0).tolist(),
]
elif reduction == "mean":
initial_value = 0
expected_result = [
np.full((2, 5), initial_value).tolist(),
np.mean(data, axis=0).tolist(),
]
elif reduction == "min":
initial_value = 1000 # some high number
expected_result = [
np.full((2, 5), initial_value).tolist(),
np.min(data, axis=0).tolist(),
]
elif reduction == "sum":
initial_value = 0
expected_result = [
np.full((2, 5), initial_value).tolist(),
np.sum(data, axis=0).tolist(),
]
for unsafe in [True, False]:
for initial in [initial_value, None]:
self._test_common(
reduction,
device,
dtype,
unsafe,
axis,
initial_value,
data,
lengths,
expected_result,
expected_grad,
check_backward,
)
instantiate_device_type_tests(TestSegmentReductions, globals())
if __name__ == "__main__":
run_tests()