| import math |
| |
| import torch |
| from torch.nn.parameter import Parameter |
| from .. import functional as F |
| from .. import init |
| from .module import Module |
| |
| |
| class Linear(Module): |
| r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` |
| |
| Args: |
| in_features: size of each input sample |
| out_features: size of each output sample |
| bias: If set to False, the layer will not learn an additive bias. |
| Default: ``True`` |
| |
| Shape: |
| - Input: :math:`(N, *, \text{in\_features})` where :math:`*` means any number of |
| additional dimensions |
| - Output: :math:`(N, *, \text{out\_features})` where all but the last dimension |
| are the same shape as the input. |
| |
| Attributes: |
| weight: the learnable weights of the module of shape |
| :math:`(\text{out\_features}, \text{in\_features})`. The values are |
| initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where |
| :math:`k = \frac{1}{\text{in\_features}}` |
| bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. |
| If :attr:`bias` is ``True``, the values are initialized from |
| :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
| :math:`k = \frac{1}{\text{in\_features}}` |
| |
| Examples:: |
| |
| >>> m = nn.Linear(20, 30) |
| >>> input = torch.randn(128, 20) |
| >>> output = m(input) |
| >>> print(output.size()) |
| torch.Size([128, 30]) |
| """ |
| |
| def __init__(self, in_features, out_features, bias=True): |
| super(Linear, self).__init__() |
| self.in_features = in_features |
| self.out_features = out_features |
| self.weight = Parameter(torch.Tensor(out_features, in_features)) |
| if bias: |
| self.bias = Parameter(torch.Tensor(out_features)) |
| else: |
| self.register_parameter('bias', None) |
| self.reset_parameters() |
| |
| def reset_parameters(self): |
| init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
| if self.bias is not None: |
| fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) |
| bound = 1 / math.sqrt(fan_in) |
| init.uniform_(self.bias, -bound, bound) |
| |
| def forward(self, input): |
| return F.linear(input, self.weight, self.bias) |
| |
| def extra_repr(self): |
| return 'in_features={}, out_features={}, bias={}'.format( |
| self.in_features, self.out_features, self.bias is not None |
| ) |
| |
| |
| class Bilinear(Module): |
| r"""Applies a bilinear transformation to the incoming data: |
| :math:`y = x_1 A x_2 + b` |
| |
| Args: |
| in1_features: size of each first input sample |
| in2_features: size of each second input sample |
| out_features: size of each output sample |
| bias: If set to False, the layer will not learn an additive bias. |
| Default: ``True`` |
| |
| Shape: |
| - Input: :math:`(N, *, \text{in1\_features})`, :math:`(N, *, \text{in2\_features})` |
| where :math:`*` means any number of additional dimensions. All but the last |
| dimension of the inputs should be the same. |
| - Output: :math:`(N, *, \text{out\_features})` where all but the last dimension |
| are the same shape as the input. |
| |
| Attributes: |
| weight: the learnable weights of the module of shape |
| :math:`(\text{out\_features} x \text{in1\_features} x \text{in2\_features})`. |
| The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where |
| :math:`k = \frac{1}{\text{in1\_features}}` |
| bias: the learnable bias of the module of shape :math:`(\text{out\_features})` |
| If :attr:`bias` is ``True``, the values are initialized from |
| :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where |
| :math:`k = \frac{1}{\text{in1\_features}}` |
| |
| Examples:: |
| |
| >>> m = nn.Bilinear(20, 30, 40) |
| >>> input1 = torch.randn(128, 20) |
| >>> input2 = torch.randn(128, 30) |
| >>> output = m(input1, input2) |
| >>> print(output.size()) |
| torch.Size([128, 40]) |
| """ |
| |
| def __init__(self, in1_features, in2_features, out_features, bias=True): |
| super(Bilinear, self).__init__() |
| self.in1_features = in1_features |
| self.in2_features = in2_features |
| self.out_features = out_features |
| self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features)) |
| |
| if bias: |
| self.bias = Parameter(torch.Tensor(out_features)) |
| else: |
| self.register_parameter('bias', None) |
| self.reset_parameters() |
| |
| def reset_parameters(self): |
| bound = 1 / math.sqrt(self.weight.size(1)) |
| init.uniform_(self.weight, -bound, bound) |
| if self.bias is not None: |
| init.uniform_(self.bias, -bound, bound) |
| |
| def forward(self, input1, input2): |
| return F.bilinear(input1, input2, self.weight, self.bias) |
| |
| def extra_repr(self): |
| return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format( |
| self.in1_features, self.in2_features, self.out_features, self.bias is not None |
| ) |
| |
| # TODO: PartialLinear - maybe in sparse? |