| #include "caffe2/operators/relu_op.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <string> | 
 |  | 
 | #include "caffe2/utils/eigen_utils.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | template <> | 
 | template <typename T> | 
 | bool ReluFunctor<CPUContext>:: | 
 | operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { | 
 |   EigenVectorMap<T>(Y, N) = ConstEigenVectorMap<float>(X, N).cwiseMax(T(0)); | 
 |   return true; | 
 | } | 
 |  | 
 | #ifdef CAFFE2_USE_ACCELERATE | 
 |  | 
 | template <> | 
 | template <> | 
 | bool ReluFunctor<CPUContext>::operator()<float>( | 
 |     const int N, | 
 |     const float* X, | 
 |     float* Y, | 
 |     CPUContext* /* context */) const { | 
 |   const float zero = 0.0f; | 
 |   vDSP_vthres(X, 1, &zero, Y, 1, N); | 
 |   return true; | 
 | } | 
 |  | 
 | #endif // CAFFE2_USE_ACCELERATE | 
 |  | 
 | template <> | 
 | template <typename T> | 
 | bool ReluGradientFunctor<CPUContext>::Forward( | 
 |     const std::vector<int>& Y_dims, | 
 |     const std::vector<int>& /* dY_dims */, | 
 |     const T* Y, | 
 |     const T* dY, | 
 |     T* dX, | 
 |     CPUContext* /* context */) const { | 
 |   const int size = std::accumulate( | 
 |       Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); | 
 |   EigenVectorArrayMap<T>(dX, size) = | 
 |       (ConstEigenVectorArrayMap<T>(Y, size) > T(0)) | 
 |           .select(ConstEigenVectorArrayMap<T>(dY, size), T(0)); | 
 |   return true; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | OpSchema::Cost CostInferenceForRelu( | 
 |     const OperatorDef& def, | 
 |     const vector<TensorShape>& in) { | 
 |   struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in); | 
 |   cost.params_bytes = 0; | 
 |   return cost; | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | REGISTER_CPU_OPERATOR( | 
 |     Relu, | 
 |     UnaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CPUContext, | 
 |         ReluFunctor<CPUContext>>); | 
 | REGISTER_CPU_GRADIENT_OPERATOR( | 
 |     ReluGradient, | 
 |     BinaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CPUContext, | 
 |         ReluGradientFunctor<CPUContext>>); | 
 |  | 
 | // Input: X, output: Y | 
 | OPERATOR_SCHEMA(Relu) | 
 |     .NumInputs(1) | 
 |     .NumOutputs(1) | 
 |     .AllowInplace({{0, 0}}) | 
 |     .CostInferenceFunction(CostInferenceForRelu) | 
 |     .IdenticalTypeAndShape() | 
 |     .SetDoc(R"DOC( | 
 | Applies rectified linear unit operation to the input data element-wise. The Relu operation takes one input $X$, produces one output $Y$, and is defined as: | 
 |  | 
 | $$Y = max(0,X)$$ | 
 |  | 
 | Github Links: | 
 | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.h | 
 | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.cc | 
 |  | 
 | <details> | 
 |  | 
 | <summary> <b>Example</b> </summary> | 
 |  | 
 | **Code** | 
 |  | 
 | ``` | 
 | workspace.ResetWorkspace() | 
 |  | 
 | op = core.CreateOperator( | 
 |   "Relu", | 
 |   ["X"], | 
 |   ["Y"] | 
 |   ) | 
 |  | 
 | workspace.FeedBlob("X", np.random.randn(4, 4).astype(np.float32)) // NCHW | 
 | print("X:\n", workspace.FetchBlob("X"), "\n") | 
 |  | 
 | workspace.RunOperatorOnce(op) | 
 | print("Y:\n", workspace.FetchBlob("Y")) | 
 |  | 
 | ``` | 
 |  | 
 | **Result** | 
 |  | 
 | ``` | 
 |  | 
 | X: | 
 |  [[-1.4655551   0.64575136  0.7921748   0.4150579 ] | 
 |  [ 0.41085166 -0.2837964   0.9881425  -1.9300346 ] | 
 |  [ 0.39705405  0.44639114  0.9940703   0.2926532 ] | 
 |  [-0.6726489   0.01330667  1.101319    0.33858967]] | 
 |  | 
 | Y: | 
 |  [[0.         0.64575136 0.7921748  0.4150579 ] | 
 |  [0.41085166 0.         0.9881425  0.        ] | 
 |  [0.39705405 0.44639114 0.9940703  0.2926532 ] | 
 |  [0.         0.01330667 1.101319   0.33858967]] | 
 |  | 
 | ``` | 
 |  | 
 | </details> | 
 |  | 
 |  | 
 | )DOC") | 
 |     .Input(0, "X", "1D input tensor") | 
 |     .Output(0, "Y", "1D output tensor with same shape as input") | 
 |     .InheritOnnxSchema(); | 
 |  | 
 | // Input: Y, dY, output: dX | 
 | GRADIENT_OPERATOR_SCHEMA(ReluGradient) | 
 |     .NumInputs(2) | 
 |     .NumOutputs(1) | 
 |     .AllowInplace({{1, 0}}) | 
 |     .IdenticalTypeAndShapeOfInput(1) | 
 |     .SetDoc(R"DOC( | 
 | ReluGradient takes both Y and dY and uses this to update dX according to the | 
 | chain rule and derivatives of the rectified linear function. | 
 | )DOC"); | 
 |  | 
 | namespace { | 
 |  | 
 | class GetReluGradient : public GradientMakerBase { | 
 |   using GradientMakerBase::GradientMakerBase; | 
 |   std::vector<OperatorDef> GetGradientDefs() override { | 
 |     return SingleGradientDef( | 
 |         def_.type() + "Gradient", | 
 |         "", | 
 |         std::vector<std::string>{O(0), GO(0)}, | 
 |         std::vector<std::string>{GI(0)}); | 
 |   } | 
 | }; | 
 |  | 
 | } // namespace | 
 |  | 
 | REGISTER_GRADIENT(Relu, GetReluGradient); | 
 |  | 
 | } // namespace caffe2 |