blob: 986edac1a7e76c2a50d7512d1013ab8ace001978 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import sys
import unittest
import torch
import torch._inductor
from torch._inductor.test_case import TestCase
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_FBCODE,
parametrize,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
from torch.testing._internal.triton_utils import requires_cuda
aten = torch.ops.aten
try:
try:
from .test_torchinductor import check_model, check_model_cuda
except ImportError:
from test_torchinductor import check_model, check_model_cuda
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
inplace_bin_ops_under_test = [
torch._foreach_add_,
torch._foreach_mul_,
torch._foreach_sub_,
torch._foreach_div_,
]
bin_ops_under_test = [
torch._foreach_add,
torch._foreach_mul,
torch._foreach_sub,
torch._foreach_div,
torch._foreach_maximum,
torch._foreach_minimum,
torch._foreach_clamp_max,
torch._foreach_clamp_min,
aten._foreach_copy,
]
un_ops_under_test = [
torch._foreach_reciprocal,
torch._foreach_neg,
torch._foreach_sign,
torch._foreach_abs,
torch._foreach_sqrt,
]
compose_ops = [torch._foreach_addcdiv, torch._foreach_addcmul]
all_ops = parametrize(
"op", bin_ops_under_test + un_ops_under_test, name_fn=lambda f: f.__name__
)
bin_ops = parametrize("op", bin_ops_under_test, name_fn=lambda f: f.__name__)
inplace_bin_ops = parametrize(
"op", inplace_bin_ops_under_test, name_fn=lambda f: f.__name__
)
scalar_bin_ops = parametrize("op", bin_ops_under_test[:4], name_fn=lambda f: f.__name__)
scalar_tensor_bin_ops = parametrize(
"op", bin_ops_under_test[:2], name_fn=lambda f: f.__name__
)
decomp_ops = parametrize("op", compose_ops, name_fn=lambda f: f.__name__)
def gen_args(op):
if op in un_ops_under_test:
return (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
else:
return (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
@instantiate_parametrized_tests
class ForeachTests(TestCase):
check_model_cuda = check_model_cuda
check_model_cpu = check_model
check_kernel_count = True
def setUp(self):
super().setUp()
torch._inductor.metrics.reset()
def tearDown(self):
super().tearDown()
torch._inductor.metrics.reset()
def _test_single_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
return op([a0, a1])
else:
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
gen_args(op),
)
def _test_single_scalar(self, op):
def fn(a0, a1):
return op([a0, a1], 3.3)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
def _test_single_scalar_tensor(self, op):
def fn(a0, a1):
return op([a0, a1], torch.tensor(3.3, device="cuda:0"))
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
# called in test_cuda_cpp_wrapper.py
@requires_cuda
def test_foreach_cpp_wrapper_cuda(self):
self._test_single_list(op=torch._foreach_add)
@requires_cuda
@all_ops
def test_single_list(self, op):
self._test_single_list(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_single_scalar(self, op):
self._test_single_scalar(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_tensor_bin_ops
def test_single_scalar_tensor(self, op):
self._test_single_scalar_tensor(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@all_ops
def test_scheduler_fusion_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c = op([a0, a1])
return torch._foreach_sqrt(c)
else:
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return c, torch._foreach_add([a0, a1], c)
self.check_model_cuda(
fn,
gen_args(op),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_scheduler_fusion_scalar(self, op):
def fn(a0, a1):
c = op([a0, a1], 3.4)
return c, torch._foreach_add([a0, a1], c)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_broadcasting(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
fn_opt = torch._dynamo.optimize()(fn)
inputs = (
torch.rand(10, 1, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(1, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@all_ops
def test_singleton_lists(self, op):
if op in un_ops_under_test:
def fn(a0):
return op([a0])
args = (torch.rand(10, 10, device="cuda:0"),)
else:
def fn(a0, b0):
return op([a0], [b0])
args = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
)
self.check_model_cuda(
fn,
args,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@bin_ops
def test_type_promotion(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
fn_opt = torch._dynamo.optimize()(fn)
max32 = torch.iinfo(torch.int32).max
max64 = torch.iinfo(torch.int64).max
inputs = (
torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32),
torch.randint(max32, (20, 20), device="cuda:0", dtype=torch.int32),
torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32),
torch.randint(max64, (20, 20), device="cuda:0", dtype=torch.int64),
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_kernel_split_arg_limit_list(self, op):
# NB: foeach_copy won't pass this test because it will dce one set of buffers
def fn(a, b):
return op(a, b)
fn_opt = torch._dynamo.optimize()(fn)
max_args = 370
max_list_len = (max_args // 3) + 1
inputs = (
[torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],
[torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
@scalar_bin_ops
@unittest.skip(
"Triton recursion depth exceeded: https://github.com/openai/triton/issues/1763"
)
def test_kernel_split_arg_limit_scalar(self, op):
def fn(a):
return op(a, 3.3)
fn_opt = torch._dynamo.optimize()(fn)
max_args = 370
max_list_len = (max_args // 2) + 1
inputs = ([torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
@bin_ops
def test_fusion_duplicate_buffer_list(self, op):
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return op([a0, b0], [c[0], c[0]])
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
reference_in_float=False,
check_lowp=False,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@all_ops
def test_non_foreach_consumer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c = op([a0, a1])
return torch.mul(c[0], a0)
else:
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return torch.mul(c[0], a0)
self.check_model_cuda(
fn,
gen_args(op),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_non_foreach_consumer_scalar(self, op):
def fn(a0, a1):
c = op([a0, a1], 4.7)
return torch.mul(c[0], a0)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@all_ops
def test_non_foreach_producer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c0 = torch.add(a0, a0)
c1 = torch.add(a1, a1)
return op([c0, c1])
else:
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
return op([a0, a1], [c0, c1])
self.check_model_cuda(
fn, gen_args(op), reference_in_float=False, check_lowp=False
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_non_foreach_producer_scalar(self, op):
def fn(a0, a1, b0, b1):
c0 = torch.mul(a0, b0)
c1 = torch.mul(a1, b1)
return op([c0, c1], 5.6)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@all_ops
def test_non_foreach_consumer_producer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c0 = torch.add(a0, a0)
c1 = torch.mul(a1, a1)
d = op([c0, c1])
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
else:
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
d = op([a0, a1], [c0, c1])
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
self.check_model_cuda(
fn,
gen_args(op),
reference_in_float=False,
check_lowp=False,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@scalar_bin_ops
def test_non_foreach_consumer_producer_scalar(self, op):
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
d = op([c0, c1], 5.8)
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
reference_in_float=False,
check_lowp=False,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@bin_ops
@torch._dynamo.config.patch("automatic_dynamic_shapes", False)
@torch._dynamo.config.patch("assume_static_by_default", False)
def test_dynamic_shapes_fallback(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@unittest.skipIf(IS_FBCODE, "cpp compile not supported in fbcode")
@bin_ops
def test_cpu_cpp_fallback(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cpu"),
torch.rand(20, 20, device="cpu"),
torch.rand(10, 10, device="cpu"),
torch.rand(20, 20, device="cpu"),
)
self.check_model_cpu(fn, inputs)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
@decomp_ops
def test_decomp(self, op):
def fn(a0, a1, b0, b1, c0, c1):
return op([a0, a1], [b0, b1], [c0, c1], value=0.5)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
def test_fuse_concat(self):
def fn(x1, x2, x3, w1, w2, w3):
x = torch.stack([x1, x2, x3])
w = torch.stack([w1, w2, w3])
y = torch.bmm(x, w)
return y
x1 = torch.randn(5, 4).cuda()
x2 = x1 + 1
x3 = x1 + 2
w1 = torch.randn(4, 3).cuda()
w2 = w1 + 1
w3 = w1 + 2
args = (x1, x2, x3, w1, w2, w3)
self.check_model_cuda(fn, args)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
def test_zero_elems(self):
def fn(a0, a1, b0, b1):
return torch._foreach_add([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(0, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(0, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@bin_ops
def test_2d_blocking(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(10, 40, device="cuda:0"),
torch.rand(10, 30, device="cuda:0"),
torch.rand(40, 10, device="cuda:0").t(),
torch.rand(30, 10, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@bin_ops
def test_2d_blocking_partitioning(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(30, 20, device="cuda:0"),
torch.rand(40, 30, device="cuda:0"),
torch.rand(30, 20, device="cuda:0"),
torch.rand(30, 40, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
@bin_ops
def test_2d_blocking_partitioning_elems(self, op):
"""2D blocking should be grouped by number of yelems"""
def fn(a0, a1, a2, b0, b1, b2):
return op([a0, a1, a2], [b0, b1, b2])
self.check_model_cuda(
fn,
(
torch.rand(10, 20, device="cuda:0"),
torch.rand(30, 20, device="cuda:0"),
torch.rand(10, 30, device="cuda:0"),
torch.rand(20, 10, device="cuda:0").t(),
torch.rand(20, 30, device="cuda:0").t(),
torch.rand(30, 10, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
@inplace_bin_ops
def test_reinplacing(self, op):
def fn(a0, a1, b0, b1):
op([a0, a1], [b0, b1])
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@inplace_bin_ops
def test_reinplacing_mut_before(self, op):
def fn(a0, a1, b0, b1):
a0.add_(torch.ones(10, 10, device="cuda:0"))
op([a0, a1], [b0, b1])
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
@inplace_bin_ops
def test_reinplacing_mut_after(self, op):
def fn(a0, a1, b0, b1):
op([a0, a1], [b0, b1])
a0.add_(torch.ones(10, 10, device="cuda:0"))
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda
def test_multi_device(self):
def test_foreach_add(a0, a1, b0, b1):
return torch._foreach_add([a0, a1], [b0, b1])
inps = [
torch.ones(10, 10, device="cuda"),
torch.ones(20, 20, device="cpu"),
torch.zeros(10, 10, device="cuda"),
torch.zeros(20, 20, device="cpu"),
]
out_eager = test_foreach_add(*inps)
out_compiled = torch.compile(test_foreach_add)(*inps)
self.assertEqual(out_eager, out_compiled)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda
def test_aliasing(self):
def test_foreach_add(a0, a1, a2, b0, b1, b2):
return torch._foreach_add_([a0, a1, a2], [b0, b1, b2])
input = torch.ones(10, 10, device="cuda")
input2 = torch.ones(10, 10, device="cuda")
inps = [
input,
input.view(10, 10),
input.view(10, 10),
input2,
input2.view(10, 10),
input2.view(10, 10),
]
out_eager = test_foreach_add(*inps)
out_compiled = torch.compile(test_foreach_add)(*inps)
self.assertEqual(out_eager, out_compiled)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 4)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests(needs="filelock")