blob: d685584a4045beb9569f00234825dbd9349b0e5a [file] [log] [blame]
#include "torch/csrc/python_headers.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/pybind.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/argument_spec.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/python_strings.h"
#include <iostream>
#include <sstream>
namespace torch { namespace jit {
std::string getPythonName(const PyObject* obj_) {
AutoGIL gil;
PyObject* obj = const_cast<PyObject*>(obj_);
auto v = py::getattr(obj, "__name__", py::str("<python_value>"));
// if this was a autograd.Function recover the name of the class
return py::str(v);
}
std::ostream& printPyObject(std::ostream & out, const THPObjectPtr& obj) {
AutoGIL gil;
auto pyobj = py::handle(const_cast<PyObject*>(obj.get()));
if (py::isinstance<py::tuple>(pyobj)) {
// This special-case for printing tuples handles a problem where
// str((2L, 3L)) outputs "(2L, 3L)" in Python 2 but "(2, 3)"
// in Python 3. In order to suppress the L-suffix, we must
// manually print the string ourselves, calling str() on the
// sub-elements.
//
// This is a fairly fragile fix (What if you have nested tuples
// in tuples? What if you have dictionaries?) but it seems to hit
// the cases that are triggered in practice in onnx-pytorch. Revisit
// this code if this is not the case.
//
// By the way, one non-solution for this problem is to monkeypatch
// tuple.__str__; this doesn't work because Python doesn't allow
// monkeypatching methods of built-in types.
auto pytuple = pyobj.cast<py::tuple>();
out << "(";
size_t i = 0;
for (auto& o : pytuple) {
if (i > 0) {
out << ", ";
}
THPObjectPtr str(py::str(o).release().ptr());
out << THPUtils_unpackString(str.get());
i++;
}
if (i == 1) {
out << ",";
}
out << ")";
return out;
} else {
return out << THPUtils_unpackString(py::str(pyobj).ptr());
}
}
// execute a Python function, used for Ops we can't optimize but that we want to optimize around
struct ConcretePythonOp : public PythonOp {
ConcretePythonOp(Graph * graph)
: PythonOp(graph) {}
virtual std::string name() const override {
AutoGIL gil;
if(auto autograd = autogradFunction()) {
return getPythonName(autograd->get());
} else {
return getPythonName(pyobj.get());
}
}
virtual void cloneFrom(Node * other_) override {
Node::cloneFrom(other_);
auto other = other_->cast<PythonOp>();
this->cconv = other->cconv;
Py_INCREF(other->pyobj.get());
this->pyobj = THPObjectPtr(other->pyobj.get());
for(auto & sa : other->scalar_args) {
Py_INCREF(sa.get());
this->scalar_args.emplace_back(sa.get());
}
}
virtual Node * allocNewInstance(Graph * g) override {
return new ConcretePythonOp(g);
}
// recover the autograd.Function instance, if this PythonOp's function
// was originally SomeFunction.apply
// used in ONNX for discovering symbolics
virtual at::optional<THPObjectPtr> autogradFunction() const override {
AutoGIL gil;
py::handle obj = const_cast<PyObject*>(pyobj.get());
auto r = py::getattr(obj, "__self__", py::none());
if(r.is_none())
return at::nullopt;
auto apply = py::getattr(r, "apply", py::none());
if(apply.is_none())
return at::nullopt;
auto c = PyObject_RichCompareBool(apply.ptr(), obj.ptr(), Py_NE);
if(PyErr_Occurred())
throw py::error_already_set();
if(c)
return at::nullopt;
return THPObjectPtr(r.release().ptr());
}
virtual void writeScalars(std::ostream& out) const override {
out << "(";
int i = 0;
for (auto& scalar : scalar_args) {
if (i++ > 0)
out << ", ";
printPyObject(out, scalar);
}
out << ")";
}
};
PythonOp* pythonAllocPythonOp(Graph* g) {
return new ConcretePythonOp(g);
}
void initPythonIRBindings(PyObject * module_) {
setAllocPythonOp(pythonAllocPythonOp);
auto m = py::handle(module_).cast<py::module>();
#define GS(name) \
def(#name,&Graph :: name)
py::class_<Graph,std::shared_ptr<Graph>>(m,"Graph")
.def(py::init<>())
.def("__repr__",[](Graph & g) {
std::stringstream ss;
ss << g;
return ss.str();
})
.def("propagate_shapes", [](Graph& g, std::vector<at::Tensor> inputs, bool with_grad) {
PropagateInputShapes(g, ArgumentSpec(with_grad, fmap<IValue>(inputs)));
})
.def("export", [](const std::shared_ptr<Graph> g, const std::vector<at::Tensor>& initializers,
int64_t onnx_opset_version, bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type) {
std::string graph;
RawDataExportMap export_map;
std::tie(graph, export_map) = ExportGraph(
g, initializers, onnx_opset_version, defer_weight_export, operator_export_type);
std::unordered_map<std::string, py::bytes> python_serialized_export_map;
for (auto& kv : export_map) {
auto t = kv.second;
size_t copy_bytes = t.type().elementSizeInBytes() * t.numel();
// TODO: this is an unecessary copy. In theory we can directly return
// the map from identifier to Tensor, but we need some API in Python
// to get raw `bytes` containing the raw tensor data.
python_serialized_export_map[kv.first] = py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
}
return std::make_tuple(py::bytes(graph), python_serialized_export_map);
}, py::arg("initializers"),
py::arg("onnx_opset_version")=0,
py::arg("defer_weight_export")=false,
py::arg("operator_export_type")=::torch::onnx::OperatorExportTypes::ONNX)
.def("prettyPrintExport", [](const std::shared_ptr<Graph> g,
const std::vector<at::Tensor>& initializers,
int64_t onnx_opset_version, bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool google_printer) {
return PrettyPrintExportedGraph(
g, initializers, onnx_opset_version, defer_weight_export, operator_export_type,
google_printer);
}, py::arg("initializers"),
py::arg("onnx_opset_version")=0,
py::arg("defer_weight_export")=false,
py::arg("operator_export_type")=::torch::onnx::OperatorExportTypes::ONNX,
py::arg("google_printer")=false)
.def("wrapPyFuncWithSymbolic", [](Graph &g, py::function func, std::vector<Value*> inputs, size_t n_outputs, py::function symbolic) {
// This function should be used for situations where we have a Python function
// that should have different behavior when exporting for JIT interpreter
// execution v.s. for ONNX export. For example, nn.utils.rnn.pack_padded_sequence
// emits a placeholder under ONNX export, but we want to keep the ability to
// run this in the interpreter, thus we emit a PythonOp for that use case.
// Concretely, this function emits a PythonOp wrapping the passed-in
// parameter `func`, while storing the function `symbolic` for use by the
// ONNX export
std::string cconv(inputs.size(), 't');
func.attr("symbolic") = symbolic;
Node* new_node = g.insertNode(g.createPythonOp(
THPObjectPtr(func.release().ptr()), cconv, {}));
for (auto i : inputs)
new_node->addInput(i);
std::vector<Value*> outputs;
for (size_t i = 0; i < n_outputs; ++i)
new_node->addOutput();
auto sl = std::make_shared<StringSourceLocation>(tracer::getPythonInterpreterStackTrace());
new_node->setSourceLocation(sl);
return py::make_iterator(new_node->outputs().begin(), new_node->outputs().end());
}, py::return_value_policy::reference_internal)
.def("inputs",[](Graph &g) {
return py::make_iterator(g.inputs().begin(), g.inputs().end());
})
.def("outputs",[](Graph &g) {
return py::make_iterator(g.outputs().begin(), g.outputs().end());
})
// TODO: Iterator invalidation might make this hazardous
.def("nodes",[](Graph &g) {
return py::make_iterator(g.nodes().begin(), g.nodes().end());
})
.def("addInput",[](Graph &g) { return g.addInput(); })
.def("copy",[](Graph &g) {
return g.copy();
})
.GS(advanceStage)
.GS(stage)
.GS(eraseInput)
.GS(registerOutput)
.def("create",[](Graph & g, const char * str) {
return g.create(Symbol::fromQualString(str));
})
.def("create",[](Graph & g, const char * str, size_t noutputs) {
return g.create(Symbol::fromQualString(str), noutputs);
})
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs) {
return g.create(Symbol::fromQualString(str),inputs);
})
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs, size_t noutputs) {
return g.create(Symbol::fromQualString(str),inputs, noutputs);
})
.def("param_node", [](Graph &g) {
return g.block()->param_node();
})
.def("return_node", [](Graph &g) {
return g.block()->return_node();
})
.GS(createFusionGroup)
.def("createClone",[](Graph & g, Node * n, py::object fn) {
return g.createClone(n, [&](Value * e) {
return fn(e).cast<Value*>();
});
})
.GS(appendNode)
.GS(prependNode)
.GS(lint)
.GS(insertNode)
;
#undef GS
#define VS(name) \
def(#name,&Value :: name)
py::class_<Value,std::unique_ptr<Value, py::nodelete>>(m,"Value")
.def("__repr__",[](Value & n) {
std::stringstream ss;
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
return ss.str();
})
.VS(type)
.VS(setType)
.VS(inferTypeFrom)
// skip owningGraph because it returns a raw pointer to a otherwise
// std::shared_ptr stored graph object, and would cause a double free
.VS(unique)
.VS(uniqueName)
.VS(setUniqueName)
.VS(setStage)
.VS(stage)
.VS(offset)
.VS(uses)
.VS(replaceAllUsesWith)
.def("node",[](Value &v) { return v.node(); })
.def("setTypeAs", [](Value * node, Value * other) {
node->setType(other->type());
return node;
})
.VS(copyMetadata)
.VS(isTensor)
;
#undef VS
py::class_<Block, std::unique_ptr<Block, py::nodelete>>(m, "Block")
.def("nodes",[](Block &b) {
return py::make_iterator(b.nodes().begin(), b.nodes().end());
});
#define NS(name) \
def(#name,&Node :: name)
py::class_<Node,std::unique_ptr<Node, py::nodelete>>(m,"Node")
.def("__repr__",[](Node & n) {
std::stringstream ss;
ss << n;
return ss.str();
})
.def("getSourceLocation", [](Node & n) -> py::object {
std::stringstream ss;
if (auto sl = n.getSourceLocation()) {
sl->highlight(ss);
return py::str(ss.str());
} else {
return py::none();
}
})
.def("hasMultipleOutputs",[](Node&n) {
return n.outputs().size() > 1;
})
.def("outputsSize",[](Node &n) {
return n.outputs().size();
})
.NS(kind)
.NS(stage)
.NS(setStage)
.def("inputs",[](Node &n) {
return py::make_iterator(n.inputs().begin(), n.inputs().end());
})
.def("outputs",[](Node &n) {
return py::make_iterator(n.outputs().begin(), n.outputs().end());
})
.NS(output)
.NS(addInput)
.NS(replaceInput)
.NS(replaceInputWith)
.NS(replaceAllUsesWith)
.NS(insertBefore)
.NS(insertAfter)
.NS(moveAfter)
.NS(moveBefore)
.NS(removeInput)
.NS(removeAllInputs)
.NS(destroy)
.NS(hasUses)
.NS(eraseOutput)
.NS(addOutput)
.NS(scopeName)
.NS(isNondeterministic)
.def("blocks", [](Node& n) {
return py::make_iterator(n.blocks().begin(), n.blocks().end());
})
.NS(addBlock)
#define AS(name) def(#name,&Attributes<Node> :: name)
// methods from Attributes
.AS(copyAttributes)
.AS(hasAttributes)
#undef AS
#define AS(name) def(#name,&Attributes<Node> :: name ## S)
// The default method names take Symbol, but the string conversion for
// Symbol you to qualify with attr::. This is not very user friendly
// for attributes, so expose the string variants instead.
.AS(hasAttribute)
.AS(kindOf)
.AS(removeAttribute)
.AS(attributeNames)
#undef AS
#define CREATE_ACCESSOR(Kind,method) \
def(#method "_",[](Node & n, const char * name, Kind##Attr::ValueType v) { \
return n . method ## _(Symbol::attr(name), std::move(v)); \
}) \
.def(#method, [](Node & n, const char * name) { \
return n.method(Symbol::attr(name)); \
})
.CREATE_ACCESSOR(Float,f)
.CREATE_ACCESSOR(Floats,fs)
.CREATE_ACCESSOR(String,s)
.CREATE_ACCESSOR(Strings,ss)
.CREATE_ACCESSOR(Int,i)
.CREATE_ACCESSOR(Ints,is)
.CREATE_ACCESSOR(Graph,g)
.CREATE_ACCESSOR(Graphs,gs)
#undef CREATE_ACCESSOR
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
.def("t_",[](Node & n, const char * name, torch::autograd::Variable v) {
return n.t_(Symbol::attr(name), std::move(v.data()));
})
.def("t", [](Node & n, const char * name) {
return torch::autograd::make_variable(n.t(Symbol::attr(name)), /*requires_grad=*/false);
})
// Tensors (ts_) -- manually written to unwrap variables into tensors.
.def("ts_",[](Node & n, const char * name, std::vector<torch::autograd::Variable> vs) {
std::vector<at::Tensor> tensors;
tensors.reserve(vs.size());
for (auto& variable : vs) {
tensors.push_back(std::move(variable.data()));
}
return n.ts_(Symbol::attr(name), std::move(tensors));
})
.def("ts", [](Node & n, const char * name) {
auto tensors = n.ts(Symbol::attr(name));
std::vector<torch::autograd::Variable> variables;
variables.reserve(tensors.size());
for (auto& tensor : tensors) {
variables.push_back(torch::autograd::make_variable(
std::move(tensor), /*requires_grad=*/false));
}
return variables;
})
.def("z_",[](Node & n, const char * name, at::Tensor v) {
return n.t_(Symbol::attr(name), autograd::Variable(v.view({})).data());
})
.def("z",[](Node & n, const char * name) {
return n.t(Symbol::attr(name));
})
.def("zs_",[](Node & n, const char * name, TensorsAttr::ValueType v) {
for (size_t i = 0; i < v.size(); ++ i) {
v[i] = autograd::Variable(v[i].view({})).data();
}
return n.ts_(Symbol::attr(name), std::move(v));
})
.def("zs",[](Node & n, const char * name) {
return n.ts(Symbol::attr(name));
})
.def("pyobj",[](Node & n) {
return py::handle(n.expect<PythonOp>()->pyobj.get()).cast<py::object>();
})
.def("cconv",[](Node & n) {
return n.expect<PythonOp>()->cconv;
})
.def("pyname",[](Node & n) {
return n.expect<PythonOp>()->name();
})
.def("scalar_args",[](Node & n) {
auto op = n.expect<PythonOp>();
auto scalars = py::list();
auto append = scalars.attr("append");
for(auto & arg : op->scalar_args) {
append(py::handle(arg.get()));
}
return scalars;
})
;
py::class_<Type,std::shared_ptr<Type>>(m,"Type")
.def("__repr__",[](Type & t) {
return t.str();
})
.def("kind",[](Type& t_) {
Type * t = &t_;
switch(t->kind()) {
case TypeKind::DynamicType:
return "DynamicType";
case TypeKind::TensorType:
return "TensorType";
case TypeKind::NumberType:
return "NumberType";
case TypeKind::NoneType:
return "NoneType";
case TypeKind::CompleteTensorType:
return "CompleteTensorType";
case TypeKind::TupleType:
return "TupleType";
case TypeKind::ListType:
return "ListType";
case TypeKind::IntType:
return "IntType";
case TypeKind::FloatType:
return "FloatType";
case TypeKind::StringType:
return "StringType";
case TypeKind::GeneratorType:
return "GeneratorType";
}
// not reachable, but some compilers complain
AT_ERROR("Unknown Type Kind");
})
.def("sizes",[](Type& t) {
return t.expect<CompleteTensorType>()->sizes();
})
.def("strides",[](Type& t) {
return t.expect<CompleteTensorType>()->strides();
})
.def("contiguous",[](Type& t) {
return std::static_pointer_cast<Type>(t.expect<CompleteTensorType>()->contiguous());
})
.def("scalarType",[](Type& t) {
return at::toString(t.expect<TensorType>()->scalarType());
})
.def("__eq__", [](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
return *self == *other;
})
.def("isSubtypeOf", [](std::shared_ptr<Type>& self, std::shared_ptr<Type> other) {
return self->isSubtypeOf(other);
});
py::class_<NumberType, Type, std::shared_ptr<NumberType>>(m, "NumberType")
.def_static("get", &NumberType::get);
py::class_<IntType, Type, std::shared_ptr<IntType>>(m, "IntType")
.def_static("get", &IntType::get);
py::class_<FloatType, Type, std::shared_ptr<FloatType>>(m, "FloatType")
.def_static("get", &FloatType::get);
py::class_<DynamicType, Type, std::shared_ptr<DynamicType>>(m, "DynamicType")
.def_static("get", &DynamicType::get);
py::class_<TupleType, Type, std::shared_ptr<TupleType>>(m, "TupleType")
.def(py::init([](std::vector<TypePtr> a){ return TupleType::create(a); }))
.def("elements", [](TupleType &self){
std::vector<TypePtr> types;
for (auto type : self.elements()) {
types.push_back(type);
}
return types;
});
py::class_<ListType, Type, std::shared_ptr<ListType>>(m, "ListType")
.def_static("ofInts", &ListType::ofInts)
.def_static("ofTensors", &ListType::ofTensors)
.def("getElementType", &ListType::getElementType);
py::class_<Use>(m,"Use")
.def_readonly("user",&Use::user)
.def_readonly("offset",&Use::offset);
}
}}