blob: adbea8a11524805473532b3f3b82fac075b757a0 [file] [log] [blame]
import os
import shutil
import sys
import unittest
import torch
import torch.utils.cpp_extension
import torch.backends.cudnn
try:
import torch_test_cpp_extension.cpp as cpp_extension
except ImportError:
print("\'test_cpp_extensions.py\' cannot be invoked directly. " +
"Run \'python run_test.py -i cpp_extensions\' for the \'test_cpp_extensions.py\' tests.")
raise
import common_utils as common
from torch.utils.cpp_extension import CUDA_HOME
TEST_CUDA = torch.cuda.is_available() and CUDA_HOME is not None
TEST_CUDNN = False
if TEST_CUDA:
CUDNN_HEADER_EXISTS = os.path.isfile(os.path.join(CUDA_HOME, 'include/cudnn.h'))
TEST_CUDNN = TEST_CUDA and CUDNN_HEADER_EXISTS and torch.backends.cudnn.is_available()
IS_WINDOWS = sys.platform == 'win32'
class TestCppExtension(common.TestCase):
def setUp(self):
if sys.platform != 'win32':
default_build_root = torch.utils.cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
shutil.rmtree(default_build_root)
def test_extension_function(self):
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = cpp_extension.sigmoid_add(x, y)
self.assertEqual(z, x.sigmoid() + y.sigmoid())
def test_extension_module(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4)
expected = mm.get().mm(weights)
result = mm.forward(weights)
self.assertEqual(expected, result)
def test_backward(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4, requires_grad=True)
result = mm.forward(weights)
result.sum().backward()
tensor = mm.get()
expected_weights_grad = tensor.t().mm(torch.ones([4, 4]))
self.assertEqual(weights.grad, expected_weights_grad)
expected_tensor_grad = torch.ones([4, 4]).mm(weights.t())
self.assertEqual(tensor.grad, expected_tensor_grad)
def test_jit_compile_extension(self):
module = torch.utils.cpp_extension.load(
name='jit_extension',
sources=[
'cpp_extensions/jit_extension.cpp',
'cpp_extensions/jit_extension2.cpp'
],
extra_include_paths=['cpp_extensions'],
extra_cflags=['-g'],
verbose=True)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
# Checking we can call a method defined not in the main C++ file.
z = module.exp_add(x, y)
self.assertEqual(z, x.exp() + y.exp())
# Checking we can use this JIT-compiled class.
doubler = module.Doubler(2, 2)
self.assertIsNone(doubler.get().grad)
self.assertEqual(doubler.get().sum(), 4)
self.assertEqual(doubler.forward().sum(), 8)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cuda_extension(self):
import torch_test_cpp_extension.cuda as cuda_extension
x = torch.zeros(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
z = cuda_extension.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_jit_cuda_extension(self):
# NOTE: The name of the extension must equal the name of the module.
module = torch.utils.cpp_extension.load(
name='torch_test_cuda_extension',
sources=[
'cpp_extensions/cuda_extension.cpp',
'cpp_extensions/cuda_extension.cu'
],
extra_cuda_cflags=['-O2'],
verbose=True)
x = torch.zeros(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
z = module.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_CUDNN, "CuDNN not found")
def test_jit_cudnn_extension(self):
# implementation of CuDNN ReLU
if sys.platform == 'win32':
extra_ldflags = ['cudnn.lib']
else:
extra_ldflags = ['-lcudnn']
module = torch.utils.cpp_extension.load(
name='torch_test_cudnn_extension',
sources=[
'cpp_extensions/cudnn_extension.cpp'
],
extra_ldflags=extra_ldflags,
verbose=True,
with_cuda=True)
x = torch.randn(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
module.cudnn_relu(x, y) # y=relu(x)
self.assertEqual(torch.nn.functional.relu(x), y)
with self.assertRaisesRegex(RuntimeError, "same size"):
y_incorrect = torch.zeros(20, device='cuda', dtype=torch.float32)
module.cudnn_relu(x, y_incorrect)
def test_optional(self):
has_value = cpp_extension.function_taking_optional(torch.ones(5))
self.assertTrue(has_value)
has_value = cpp_extension.function_taking_optional(None)
self.assertFalse(has_value)
def test_inline_jit_compile_extension_with_functions_as_list(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_with_functions_list',
cpp_sources=cpp_source,
functions='tanh_add',
verbose=True)
self.assertEqual(module.tanh_add.__doc__.split('\n')[2], 'tanh_add')
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
def test_inline_jit_compile_extension_with_functions_as_dict(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_with_functions_dict',
cpp_sources=cpp_source,
functions={'tanh_add': 'Tanh and then sum :D'},
verbose=True)
self.assertEqual(
module.tanh_add.__doc__.split('\n')[2], 'Tanh and then sum :D')
def test_inline_jit_compile_extension_multiple_sources_and_no_functions(self):
cpp_source1 = '''
at::Tensor sin_add(at::Tensor x, at::Tensor y) {
return x.sin() + y.sin();
}
'''
cpp_source2 = '''
#include <torch/extension.h>
at::Tensor sin_add(at::Tensor x, at::Tensor y);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("sin_add", &sin_add, "sin(x) + sin(y)");
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension',
cpp_sources=[cpp_source1, cpp_source2],
verbose=True)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.sin_add(x, y)
self.assertEqual(z, x.sin() + y.sin())
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_inline_jit_compile_extension_cuda(self):
cuda_source = '''
__global__ void cos_add_kernel(
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ output,
const int size) {
const auto index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < size) {
output[index] = __cosf(x[index]) + __cosf(y[index]);
}
}
at::Tensor cos_add(at::Tensor x, at::Tensor y) {
auto output = at::zeros_like(x);
const int threads = 1024;
const int blocks = (output.numel() + threads - 1) / threads;
cos_add_kernel<<<blocks, threads>>>(x.data<float>(), y.data<float>(), output.data<float>(), output.numel());
return output;
}
'''
# Here, the C++ source need only declare the function signature.
cpp_source = 'at::Tensor cos_add(at::Tensor x, at::Tensor y);'
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_cuda',
cpp_sources=cpp_source,
cuda_sources=cuda_source,
functions=['cos_add'],
verbose=True)
self.assertEqual(module.cos_add.__doc__.split('\n')[2], 'cos_add')
x = torch.randn(4, 4, device='cuda', dtype=torch.float32)
y = torch.randn(4, 4, device='cuda', dtype=torch.float32)
z = module.cos_add(x, y)
self.assertEqual(z, x.cos() + y.cos())
def test_inline_jit_compile_extension_throws_when_functions_is_bad(self):
with self.assertRaises(ValueError):
torch.utils.cpp_extension.load_inline(
name='invalid_jit_extension', cpp_sources='', functions=5)
def test_lenient_flag_handling_in_jit_extensions(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='lenient_flag_handling_extension',
cpp_sources=cpp_source,
functions='tanh_add',
extra_cflags=['-g\n\n', '-O0 -Wall'],
extra_include_paths=[' cpp_extensions\n'],
verbose=True)
x = torch.zeros(100, dtype=torch.float32)
y = torch.zeros(100, dtype=torch.float32)
z = module.tanh_add(x, y).cpu()
self.assertEqual(z, x.tanh() + y.tanh())
def test_complex_registration(self):
module = torch.utils.cpp_extension.load(
name='complex_registration_extension',
sources='cpp_extensions/complex_registration_extension.cpp',
verbose=True)
torch.empty(2, 2, dtype=torch.complex64)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_half_support(self):
'''
Checks for an issue with operator< ambiguity for half when certain
THC headers are included.
See https://github.com/pytorch/pytorch/pull/10301#issuecomment-416773333
for the corresponding issue.
'''
cuda_source = '''
#include <THC/THCNumerics.cuh>
template<typename T, typename U>
__global__ void half_test_kernel(const T* input, U* output) {
if (input[0] < input[1] || input[0] >= input[1]) {
output[0] = 123;
}
}
at::Tensor half_test(at::Tensor input) {
auto output = at::empty(1, input.options().dtype(at::kFloat));
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "half_test", [&] {
half_test_kernel<scalar_t><<<1, 1>>>(
input.data<scalar_t>(),
output.data<float>());
});
return output;
}
'''
module = torch.utils.cpp_extension.load_inline(
name='half_test_extension',
cpp_sources='at::Tensor half_test(at::Tensor input);',
cuda_sources=cuda_source,
functions=['half_test'],
verbose=True)
x = torch.randn(3, device='cuda', dtype=torch.half)
result = module.half_test(x)
self.assertEqual(result[0], 123)
def test_reload_jit_extension(self):
def compile(code):
return torch.utils.cpp_extension.load_inline(
name='reloaded_jit_extension',
cpp_sources=code,
functions='f',
verbose=True)
module = compile('int f() { return 123; }')
self.assertEqual(module.f(), 123)
module = compile('int f() { return 456; }')
self.assertEqual(module.f(), 456)
module = compile('int f() { return 456; }')
self.assertEqual(module.f(), 456)
module = compile('int f() { return 789; }')
self.assertEqual(module.f(), 789)
@unittest.skipIf(IS_WINDOWS, "C++ API not yet supported on Windows")
def test_cpp_api_extension(self):
here = os.path.abspath(__file__)
pytorch_root = os.path.dirname(os.path.dirname(here))
api_include = os.path.join(pytorch_root, 'torch', 'csrc', 'api', 'include')
module = torch.utils.cpp_extension.load(
name='cpp_api_extension',
sources='cpp_extensions/cpp_api_extension.cpp',
extra_include_paths=api_include,
extra_cflags=[] if IS_WINDOWS else ['-UTORCH_API_INCLUDE_EXTENSION_H'],
verbose=True)
net = module.Net(3, 5)
self.assertTrue(net.training)
net.eval()
self.assertFalse(net.training)
net.train()
self.assertTrue(net.training)
net.eval()
input = torch.randn(2, 3, dtype=torch.float32)
output = net.forward(input)
self.assertEqual(output, net.forward(input))
self.assertEqual(list(output.shape), [2, 5])
bias = net.get_bias()
self.assertEqual(list(bias.shape), [5])
net.set_bias(bias + 1)
self.assertEqual(net.get_bias(), bias + 1)
output2 = net.forward(input)
self.assertNotEqual(output + 1, output2)
self.assertEqual(len(net.parameters()), 4)
p = net.named_parameters()
self.assertEqual(type(p), dict)
self.assertEqual(len(p), 4)
self.assertIn('fc.weight', p)
self.assertIn('fc.bias', p)
self.assertIn('bn.weight', p)
self.assertIn('bn.bias', p)
if __name__ == '__main__':
common.run_tests()