blob: 91e7aec2315fffa97b40dc1396d7e14383cb9c06 [file] [log] [blame]
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/TensorTransformations.h>
#include <ATen/native/cpu/PixelShuffleKernel.h>
#include <ATen/native/PixelShuffle.h>
#include <c10/util/Exception.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/pixel_shuffle_native.h>
#include <ATen/ops/pixel_unshuffle_native.h>
#endif
#include <algorithm>
#include <numeric>
#include <vector>
namespace at::native {
Tensor pixel_shuffle_cpu(const Tensor& self, int64_t upscale_factor) {
check_pixel_shuffle_shapes(self, upscale_factor);
// Format: (B1, ..., Bn), C, H, W
std::vector<int64_t> output_sizes(self.sizes().begin(), self.sizes().end() - 3);
output_sizes.insert(output_sizes.end(),
{self.size(-3) / upscale_factor / upscale_factor,
self.size(-2) * upscale_factor,
self.size(-1) * upscale_factor});
auto output = at::empty({0}, self.options());
auto memory_format = self.suggest_memory_format();
output.resize_(output_sizes, memory_format);
if (output.numel() == 0) {
return output;
}
auto input = self.contiguous(memory_format);
pixel_shuffle_kernel(kCPU, output, input, upscale_factor);
return output;
}
Tensor pixel_unshuffle_cpu(const Tensor& self, int64_t downscale_factor) {
check_pixel_unshuffle_shapes(self, downscale_factor);
if (self.numel() == 0) {
return self.clone();
}
// Format: (B1, ..., Bn), C, H, W
std::vector<int64_t> output_sizes(self.sizes().begin(), self.sizes().end() - 3);
output_sizes.insert(output_sizes.end(),
{self.size(-3) * downscale_factor * downscale_factor,
self.size(-2) / downscale_factor,
self.size(-1) / downscale_factor});
auto output = at::empty({0}, self.options());
auto memory_format = self.suggest_memory_format();
output.resize_(output_sizes, memory_format);
if (output.numel() == 0) {
return output;
}
auto input = self.contiguous(memory_format);
pixel_unshuffle_kernel(kCPU, output, input, downscale_factor);
return output;
}
Tensor math_pixel_shuffle(const Tensor& self, int64_t upscale_factor) {
check_pixel_shuffle_shapes(self, upscale_factor);
// Format: (B1, ..., Bn), C, H, W
int64_t c = self.size(-3);
int64_t h = self.size(-2);
int64_t w = self.size(-1);
const auto NUM_NON_BATCH_DIMS = 3;
const auto self_sizes_batch_end = self.sizes().end() - NUM_NON_BATCH_DIMS;
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
int64_t oc = c / upscale_factor_squared;
int64_t oh = h * upscale_factor;
int64_t ow = w * upscale_factor;
// First, reshape to split the channels dim from c into 3 separate dims: (oc,
// upscale_factor, upscale_factor). This allows shuffling to be done next by
// permuting dims.
std::vector<int64_t> added_dims_shape(
self.sizes().begin(), self_sizes_batch_end);
added_dims_shape.insert(
added_dims_shape.end(), {oc, upscale_factor, upscale_factor, h, w});
const auto input_reshaped = self.reshape(added_dims_shape);
// Next, shuffle by permuting the new upscale_factor dims alongside the height and width dims.
std::vector<int64_t> permutation(self.sizes().begin(), self_sizes_batch_end);
// std::iota is used to maintain the batch dims within the permutation.
std::iota(permutation.begin(), permutation.end(), 0);
permutation.insert(permutation.end(), {-5 /* oc */, -2 /* h */, -4 /* 1st upscale_factor */, -1 /* w */,
-3 /* 2nd upscale_factor */});
const auto input_permuted = input_reshaped.permute(permutation);
// Finally, upscale by collapsing (h, upscale_factor) -> a single dim (oh)
// and (w, upscale_factor) -> a single dim (ow).
std::vector<int64_t> final_shape(self.sizes().begin(), self_sizes_batch_end);
final_shape.insert(final_shape.end(), {oc, oh, ow});
// pixel_shuffle expects to *never* return an alias of the input.
return input_permuted.clone(at::MemoryFormat::Contiguous).view(final_shape);
}
Tensor math_pixel_unshuffle(const Tensor& self, int64_t downscale_factor) {
check_pixel_unshuffle_shapes(self, downscale_factor);
// Format: (B1, ..., Bn), C, H, W
int64_t c = self.size(-3);
int64_t h = self.size(-2);
int64_t w = self.size(-1);
constexpr auto NUM_NON_BATCH_DIMS = 3;
const auto self_sizes_batch_end = self.sizes().end() - NUM_NON_BATCH_DIMS;
int64_t downscale_factor_squared = downscale_factor * downscale_factor;
int64_t oc = c * downscale_factor_squared;
int64_t oh = h / downscale_factor;
int64_t ow = w / downscale_factor;
// First, reshape to split height dim into (oh, downscale_factor) dims and
// width dim into (ow, downscale_factor) dims. This allows unshuffling to be
// done next by permuting dims.
std::vector<int64_t> added_dims_shape(
self.sizes().begin(), self_sizes_batch_end);
added_dims_shape.insert(
added_dims_shape.end(), {c, oh, downscale_factor, ow, downscale_factor});
const auto input_reshaped = self.reshape(added_dims_shape);
// Next, unshuffle by permuting the downscale_factor dims alongside the channel dim.
std::vector<int64_t> permutation(self.sizes().begin(), self_sizes_batch_end);
// std::iota is used to maintain the batch dims within the permutation.
std::iota(permutation.begin(), permutation.end(), 0);
permutation.insert(permutation.end(), {-5 /* c */, -3 /* 1st downscale_factor */, -1 /*2nd downscale_factor */,
-4 /* oh */, -2 /* ow */});
const auto input_permuted = input_reshaped.permute(permutation);
// Finally, downscale by collapsing (c, downscale_factor, downscale_factor) -> a single dim (oc),
// resulting in height=oh and width=ow.
std::vector<int64_t> final_shape(self.sizes().begin(), self_sizes_batch_end);
final_shape.insert(final_shape.end(), {oc, oh, ow});
// pixel_unshuffle expects to *never* return an alias of the input.
return input_permuted.clone(at::MemoryFormat::Contiguous).view(final_shape);
}
DEFINE_DISPATCH(pixel_shuffle_kernel);
DEFINE_DISPATCH(pixel_unshuffle_kernel);
} // namespace at::native