blob: 4c60294fc630c0b28dfd807fb1a86f63e6a3805a [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
from .quantize import * # noqa: F401
from .observer import * # noqa: F401
from .QConfig import * # noqa: F401
from .fake_quantize import * # noqa: F401
from .fuse_modules import fuse_modules # noqa: F401
def default_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for data, target in calib_data:
model(data)
_all__ = [
'QuantWrapper', 'QuantStub', 'DeQuantStub', 'DEFAULT_MODULE_MAPPING',
# Top level API for quantizing a float model
'quantize',
# Sub functions called by quantize
'prepare', 'convert',
# Sub functions for `prepare` and `swap_module`
'propagate_qconfig', 'add_quant_dequant', 'add_observer', 'swap_module',
'default_eval_fn',
# Observers
'Observer', 'WeightObserver', 'observer', 'default_observer',
'default_weight_observer',
# QConfig
'QConfig', 'default_qconfig', 'default_dynamic_qconfig',
# QAT utilities
'default_qat_qconfig', 'prepare_qat', 'quantize_qat',
# module transformations
'fuse_modules',
# Dynamic quantization utilities
'quantize_dynamic',
]