| import warnings |
| import torch |
| from torch._six import inf |
| |
| |
| def clip_grad_norm_(parameters, max_norm, norm_type=2): |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| The norm is computed over all gradients together, as if they were |
| concatenated into a single vector. Gradients are modified in-place. |
| |
| Arguments: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| max_norm (float or int): max norm of the gradients |
| norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for |
| infinity norm. |
| |
| Returns: |
| Total norm of the parameters (viewed as a single vector). |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| parameters = list(filter(lambda p: p.grad is not None, parameters)) |
| max_norm = float(max_norm) |
| norm_type = float(norm_type) |
| if norm_type == inf: |
| total_norm = max(p.grad.data.abs().max() for p in parameters) |
| else: |
| total_norm = 0 |
| for p in parameters: |
| param_norm = p.grad.data.norm(norm_type) |
| total_norm += param_norm.item() ** norm_type |
| total_norm = total_norm ** (1. / norm_type) |
| clip_coef = max_norm / (total_norm + 1e-6) |
| if clip_coef < 1: |
| for p in parameters: |
| p.grad.data.mul_(clip_coef) |
| return total_norm |
| |
| |
| def clip_grad_norm(parameters, max_norm, norm_type=2): |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| .. warning:: |
| This method is now deprecated in favor of |
| :func:`torch.nn.utils.clip_grad_norm_`. |
| """ |
| warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor " |
| "of torch.nn.utils.clip_grad_norm_.", stacklevel=2) |
| return clip_grad_norm_(parameters, max_norm, norm_type) |
| |
| |
| def clip_grad_value_(parameters, clip_value): |
| r"""Clips gradient of an iterable of parameters at specified value. |
| |
| Gradients are modified in-place. |
| |
| Arguments: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| clip_value (float or int): maximum allowed value of the gradients. |
| The gradients are clipped in the range |
| :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| clip_value = float(clip_value) |
| for p in filter(lambda p: p.grad is not None, parameters): |
| p.grad.data.clamp_(min=-clip_value, max=clip_value) |