| #include "caffe2/operators/utility_ops.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | REGISTER_CPU_OPERATOR(Sum, SumOp<CPUContext>); | 
 |  | 
 | OPERATOR_SCHEMA(Sum) | 
 |     .NumInputs(1, INT_MAX) | 
 |     .NumOutputs(1) | 
 |     .AllowInplace({{0, 0}}) | 
 |     .CostInferenceFunction(CostInferenceForSum) | 
 |     .InputsCanCrossDevices() | 
 |     .IdenticalTypeAndShapeOfInput(0) | 
 |     .SetDoc(R"DOC( | 
 | Element-wise sum of each of the input tensors. The first input tensor can be used | 
 | in-place as the output tensor, in which case the sum will be done in place and | 
 | results will be accumulated the first input tensor. All inputs and outputs must | 
 | have the same shape and data type. | 
 |  | 
 | Github Links: | 
 |  | 
 | - https://github.com/pytorch/pytorch/blob/main/caffe2/operators/elementwise_sum_op.cc | 
 |  | 
 |  | 
 | <details> | 
 |  | 
 | <summary> <b>Example</b> </summary> | 
 |  | 
 | **Code** | 
 |  | 
 | ``` | 
 |  | 
 | workspace.ResetWorkspace() | 
 |  | 
 | op = core.CreateOperator( | 
 |     "Sum", | 
 |     ["A",  "B"], | 
 |     ["C"], | 
 | ) | 
 |  | 
 | workspace.FeedBlob("A", np.array([[1,2],[3,4]]).astype(np.float32)) | 
 | workspace.FeedBlob("B", np.array([[5,6],[7,8]]).astype(np.float32)) | 
 | print("A:", workspace.FetchBlob("A")) | 
 | print("B:", workspace.FetchBlob("B")) | 
 | workspace.RunOperatorOnce(op) | 
 | print("C:", workspace.FetchBlob("A")) | 
 |  | 
 | ``` | 
 |  | 
 | **Result** | 
 |  | 
 | ``` | 
 |  | 
 | A: [[1. 2.] | 
 |  [3. 4.]] | 
 | B: [[5. 6.] | 
 |  [7. 8.]] | 
 | C: [[1. 2.] | 
 |  [3. 4.]] | 
 |  | 
 | ``` | 
 |  | 
 | </details> | 
 |  | 
 | <details> | 
 |  | 
 | <summary> <b>Example 2</b> </summary> | 
 |  | 
 | **Code** | 
 |  | 
 | ``` | 
 |  | 
 | workspace.ResetWorkspace() | 
 |  | 
 | op = core.CreateOperator( | 
 |     "Sum", | 
 |     ["A",  "B"], | 
 |     ["A"],  // inplace | 
 | ) | 
 |  | 
 | workspace.FeedBlob("A", np.array([[1,2,5],[8,3,4]]).astype(np.float32)) | 
 | workspace.FeedBlob("B", np.array([[9,5,6],[6,7,8]]).astype(np.float32)) | 
 | print("A:", workspace.FetchBlob("A")) | 
 | print("B:", workspace.FetchBlob("B")) | 
 | workspace.RunOperatorOnce(op) | 
 | print("A after Sum:", workspace.FetchBlob("A")) | 
 |  | 
 | ``` | 
 |  | 
 | **Result** | 
 |  | 
 | ``` | 
 |  | 
 | A: [[1. 2. 5.] | 
 |  [8. 3. 4.]] | 
 | B: [[9. 5. 6.] | 
 |  [6. 7. 8.]] | 
 | A after Sum: [[10.  7. 11.] | 
 |  [14. 10. 12.]] | 
 |  | 
 | ``` | 
 |  | 
 | </details> | 
 |  | 
 | )DOC") | 
 |     .Input( | 
 |         0, | 
 |         "A", | 
 |         "*(type: Tensor`<float>`)* First tensor to be added element-wise.") | 
 |     .Input( | 
 |         1, | 
 |         "B", | 
 |         "*(type: Tensor`<float>`)* Second tensor to be added element-wise.") | 
 |     .Output(0, "C", "*(type: Tensor`<float>`)* Sum of A and B.") | 
 |     .InheritOnnxSchema(); | 
 | } |