blob: 00aa3c837ef408009fb00e89e1a1390be4992356 [file] [log] [blame]
# Owner(s): ["module: dynamo"]
import contextlib
import functools
import unittest
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._functorch.config
import torch.utils._pytree as pytree
import torch.utils.checkpoint
from torch._dynamo.testing import normalize_gm
from torch._higher_order_ops.wrap import wrap
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
from torch.nested._internal.nested_tensor import jagged_from_list, ViewBufferFromNested
from torch.testing._internal.inductor_utils import HAS_CUDA
requires_cuda = functools.partial(unittest.skipIf, not HAS_CUDA, "requires cuda")
class MockSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
class EagerRecordGraphAndInputs:
def __init__(self):
self.graphs = []
self.example_inputs = []
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
self.graphs.append(gm)
self.example_inputs.append(example_inputs)
return gm
@contextlib.contextmanager
def preserve_subclass_config():
old_subclass_set = set(torch._dynamo.config.traceable_tensor_subclasses)
try:
torch._dynamo.config.traceable_tensor_subclasses.add(MockSubclass)
yield
finally:
torch._dynamo.config.traceable_tensor_subclasses.clear()
torch._dynamo.config.traceable_tensor_subclasses.update(old_subclass_set)
class SubclassTests(torch._dynamo.test_case.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._exit_stack.enter_context(preserve_subclass_config())
@classmethod
def tearDownClass(cls):
cls._exit_stack.close()
def test_torch_function_state_graph_break(self):
@torch.compile(backend="eager")
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch._dynamo.graph_break()
return torch._C._is_torch_function_enabled(), torch.add(x, 1.0)
input = torch.ones(2, 2)
res, _ = fn(input)
self.assertFalse(res)
def test_torch_function_state_tracing(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch.add(x, 1.0)
input = torch.ones(2, 2)
res = fn(input)
def test_torch_function_state_guards(self):
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
torch.add(x, 1.0)
input = torch.ones(2, 2)
with torch._C.DisableTorchFunctionSubclass():
res = fn(input)
res = fn(input)
self.assertEqual(cnt.frame_count, 2)
def test_return_subclass(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return MockSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, MockSubclass)
def test_return_local_subclass(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
torch._dynamo.config.traceable_tensor_subclasses.add(LocalSubclass)
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return LocalSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, LocalSubclass)
def test_compile_with_fake_tensor_dynamic_dim(self):
x = torch.randn([3, 4])
def f(x):
return torch.sin(x)
def test_dynamic_dim(f, x, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
x1 = torch.rand_like(x)
f(x)
f(torch.randn([4, 3]))
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
x_fake = fake_mode.from_tensor(
x, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
x1_fake = fake_mode.from_tensor(
x1, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
opt_f(x_fake)
opt_f(x1_fake)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
test_dynamic_dim(f, x, DimDynamic.DYNAMIC, 1, 1)
test_dynamic_dim(f, x, DimDynamic.DUCK, 1, 1)
test_dynamic_dim(f, x, DimDynamic.STATIC, 1, 1)
def test_compile_with_fake_tensor_automatic_dynamic(self):
def f(x):
return torch.sin(x)
def test_automatic_dynamic(f, inps, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
for inp in inps:
fake_inp = fake_mode.from_tensor(
inp, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
opt_f(fake_inp)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
x = torch.randn([3, 4])
y = torch.randn([4, 5])
z = torch.randn([5, 6])
a = torch.randn([3, 5])
b = torch.randn([4, 4])
# When inputs' DimDynamic is DYNAMIC or DUCK, the inputs
# to opt_f will be tensors with SymInt sizes. Dynamo will treat input
# as dynamic automatically and will only compile once
for dim_dynamic in [DimDynamic.DYNAMIC, DimDynamic.DUCK]:
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 1, 1)
for dim_dynamic in [DimDynamic.STATIC]:
# Recompile once, first with dim 0 and 1 become Dynamic
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 2, 2)
# Recompile 2 times, first with dim 1 become Dynamic, second with dim 0 becomes Dynamic.
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 3, 3)
# Recompile 2 times, first with dim 0 become Dynamic, second with dim 1 becomes Dynamic.
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 3, 3)
def test_compile_with_functionalization(self):
x = torch.randn([3, 4])
x_clone = x.clone()
x_clone2 = x.clone()
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return x.add_(1.0) + torch.nn.functional.relu_(x)
f_out = f(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 3)
self.assertEqual(len(backend.graphs), 1)
self.assertEqual(len(backend.example_inputs), 1)
expected = """\
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
add_ = l_x_.add_(1.0)
relu_ = torch.relu_(l_x_); l_x_ = None
add = add_ + relu_; add_ = relu_ = None
return (add,)
"""
actual = normalize_gm(backend.graphs[0].print_readable(print_output=False))
self.assertEqual(actual, expected)
ff = torch.func.functionalize(f)
ff_out = ff(x_clone)
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 6)
self.assertEqual(len(backend.graphs), 2)
self.assertEqual(len(backend.example_inputs), 2)
actual = normalize_gm(backend.graphs[1].print_readable(print_output=False))
self.assertEqual(actual, expected)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
# Cannot re-use the version from AOTAutograd, since that uses python functional tensors.
def to_fun(x):
x_functional = torch._to_functional_tensor(x)
torch._mirror_autograd_meta_to(x, x_functional)
return x_functional
def aot_f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(to_fun, args)
func_kwargs = pytree.tree_map(to_fun, kwargs)
return func(*func_args, **func_kwargs)
finally:
torch._disable_functionalization()
return wrapper
aot_ff = aot_f_wrapper(f)
aot_ff_out = aot_ff(x_clone2)
self.assertEqual(cnt.frame_count, 3)
self.assertEqual(cnt.op_count, 9)
self.assertEqual(len(backend.graphs), 3)
self.assertEqual(len(backend.example_inputs), 3)
actual = normalize_gm(backend.graphs[2].print_readable(print_output=False))
self.assertEqual(actual, expected)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
self.assertEqual(f_out, ff_out)
self.assertEqual(f_out, aot_ff_out)
try:
torch._enable_functionalization(reapply_views=False)
xf = pytree.tree_map(to_fun, x)
x_view = xf.t()
with self.assertRaisesRegex(RuntimeError, "Cannot safely fakify a view"):
f(x_view)
finally:
torch._disable_functionalization()
def test_compile_higher_order_with_functionalization(self):
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return wrap(lambda x: x.add_(1.0), x)
def check_count_and_graph(
exp_frame_count, exp_op_count, exp_n_graph, exp_graph
):
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
self.assertEqual(len(backend.graphs), exp_n_graph)
actual = normalize_gm(
backend.graphs[exp_n_graph - 1].print_readable(print_output=False)
)
self.assertExpectedInline(actual, exp_graph)
t = torch.randn([3, 4])
t_clone = t.clone()
t_clone2 = t.clone()
f(t)
expected_graph = """\
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
wrap = torch._higher_order_ops.wrap.wrap(wrap_body_0, l_x_); wrap_body_0 = l_x_ = None
getitem = wrap[0]; wrap = None
return (getitem,)
class GraphModule(torch.nn.Module):
def forward(self, l_x_):
add_ = l_x_.add_(1.0); l_x_ = None
return (add_,)
"""
check_count_and_graph(1, 2, 1, expected_graph)
ff = torch.func.functionalize(f)
ff_out = ff(t_clone)
# frame count and op count are incremented due to re-compilation
check_count_and_graph(2, 4, 2, expected_graph)
try:
x = torch._to_functional_tensor(t_clone2)
torch._mirror_autograd_meta_to(t_clone2, x)
torch._enable_functionalization(reapply_views=False)
aot_f_out = f(x)
finally:
torch._disable_functionalization()
# frame count and op count are incremented due to re-compilation
check_count_and_graph(3, 6, 3, expected_graph)
def test_has_torch_function(self):
class MyTensor:
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.max:
return torch.tensor(123)
return func(*args, **kwargs)
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
def fn(x):
return torch.overrides.has_torch_function_unary(
x
), torch.overrides.has_torch_function_variadic(x)
for test_class in [MyTensor, LocalSubclass]:
x = test_class()
ref0 = fn(x)
ref1 = fn(4)
opt_fn = torch._dynamo.optimize("eager")(fn)
res0 = opt_fn(x)
res1 = opt_fn(4)
self.assertEqual(ref0, res0)
self.assertEqual(ref1, res1)
def test_wrapper_subclass_guards_on_inner_tensor(self):
# Holds an inner tensor, that has a distinct shape from the outer wrapper tensor.
# Also adds additional guards on the inner tensor's sizes.
# When the first input to an op has x.shape[0] > 5, we insert an extra add node.
class DoubleSizeMaybeAddGeThreeTensor(torch.Tensor):
@staticmethod
def __new__(cls, inner):
# Double the outer-most dimension
outer_shape = (inner.shape[0] * 2,) + inner.shape[1:]
return torch.Tensor._make_wrapper_subclass(
# TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
# Calling the overload that has kwargs causes us to go down the first overload path,
# which will **always** specialize sizes.
# We should probably eventually fix this so that the first overload can just handle dynamic shapes.
cls,
outer_shape,
inner.stride(),
None,
None,
inner.dtype,
inner.layout,
inner.device,
False,
inner.requires_grad,
)
def __init__(self, inner):
self.inner_elem = inner
def __tensor_flatten__(self):
return ["inner_elem"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, _):
return DoubleSizeMaybeAddGeThreeTensor(inner_tensors["inner_elem"])
def __repr__(self):
return f"DoubleSizeMayberAddGeThreeTensor({repr(self.inner_elem)})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
args_inner = torch.utils._pytree.tree_map_only(
DoubleSizeMaybeAddGeThreeTensor, lambda x: x.inner_elem, args
)
out_inner = func(*args_inner, **kwargs)
# Add guards on the inner tensor's sizes
if args_inner[0].shape[0] > 3:
out_inner += 2
return DoubleSizeMaybeAddGeThreeTensor(out_inner)
lower_bound_str = None
upper_bound_str = None
curr_var_to_val = None
curr_var_to_sources = None
def backend(gm, args):
print(gm.code)
context = torch._guards.TracingContext.get()
val_to_guards = list(context.fake_mode.shape_env.var_to_guards.values())
# Grab info on sources and guards from the shapenv
nonlocal lower_bound_str
nonlocal upper_bound_str
nonlocal curr_var_to_val
nonlocal curr_var_to_sources
lower_bound_str = str(val_to_guards[0][0].expr)
upper_bound_str = str(val_to_guards[0][1].expr)
curr_var_to_val = {
str(k): v for k, v in context.fake_mode.shape_env.var_to_val.items()
}
curr_var_to_sources = {
str(k): v[0].name()
for k, v in context.fake_mode.shape_env.var_to_sources.items()
}
return gm
@torch.compile(backend=backend)
def fn(x):
if x.shape[0] < 10:
return torch.mul(x, x)
else:
return torch.div(x, x)
inp = torch.ones(4, 4)
x = DoubleSizeMaybeAddGeThreeTensor(inp)
torch._dynamo.mark_dynamic(x, 0)
res = fn(x)
# During fakeifying, we end up allocating a separate symint
# for the outer and inner tensor (in this test, s0 is unused).
expected_var_to_val = {
"s0": 8,
"s1": 4,
}
expected_var_to_sources = {
"s0": "L['x'].size()[0]",
"s1": "L['x'].inner_elem.size()[0]",
}
# lower bound comes from code underneath torch_dispatch (operating on the inner tensor size)
expected_lower_bound = "s1 > 3"
# upper bound comes from user code (operating on the wrapper size)
expected_upper_bound = "2*s1 < 10"
self.assertEqual(curr_var_to_val, expected_var_to_val)
self.assertEqual(curr_var_to_sources, expected_var_to_sources)
self.assertEqual(lower_bound_str, expected_lower_bound)
self.assertEqual(upper_bound_str, expected_upper_bound)
def test_recompile_with_symbool_inputs(self):
def f(pred: bool):
if pred:
return torch.ones([3, 4])
else:
return torch.ones([4, 3])
def test_recompilation(
f, x, sizes, exp_graphs, exp_frame_count, exp_shape_env_guards
):
torch._dynamo.reset()
shape_env = ShapeEnv()
backend = torch._dynamo.testing.EagerAndRecordGraphs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
f_cond = torch.compile(f, backend=cnt, fullgraph=True)
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
fake_inp = fake_mode.from_tensor(
x, dynamic_dims=[DimDynamic.DYNAMIC for i in range(x.dim())]
)
for i, size in enumerate(sizes):
pred = fake_inp.size(0) == size
f_cond(pred)
actual = normalize_gm(
backend.graphs[exp_frame_count[i] - 1].print_readable(
print_output=False
)
)
actual_guard_str = [str(guard.expr) for guard in shape_env.guards]
self.assertExpectedInline(actual, exp_graphs[i])
self.assertEqual(cnt.frame_count, exp_frame_count[i])
self.assertEqual(actual_guard_str, exp_shape_env_guards[i])
true_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones = torch.ones([3, 4])
return (ones,)
"""
false_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones = torch.ones([4, 3])
return (ones,)
"""
test_recompilation(
f,
torch.randn([3, 4]),
[3, 3, 4, 5],
exp_graphs=[true_graph, true_graph, false_graph, false_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)"],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
],
],
)
test_recompilation(
f,
torch.randn([3, 4]),
[4, 5, 3, 3],
exp_graphs=[false_graph, false_graph, true_graph, true_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)"],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
],
)
def test_support_bases(self):
import abc
import torch.fx._symbolic_trace
class Meta(abc.ABCMeta, torch.fx._symbolic_trace.ProxyableClassMeta):
def __new__(cls, name, bases, dct):
x = super().__new__(cls, name, bases, dct)
x.attr = 100
return x
class Multistreamable(abc.ABC): # noqa: B024
pass
class Foo(Multistreamable, metaclass=Meta):
pass
@torch.compile(backend="eager", fullgraph=True)
def f(x):
typ = type(Foo())
typ.__bases__
return typ.__bases__
self.assertEqual(f(torch.randn(1)), (Multistreamable,))
class TestNestedTensor(torch._dynamo.test_case.TestCase):
def _get_jagged_tensor(self, nested_size, offsets):
# Makes a jagged tensor with 3 constituent tensors with size
# as specified ((S0, S1, S2), D)
S0, S1, S2 = nested_size[0]
D = nested_size[1]
a = torch.randn(S0, D, requires_grad=True, dtype=torch.float64)
b = torch.randn(S1, D, requires_grad=True, dtype=torch.float64)
c = torch.randn(S2, D, requires_grad=True, dtype=torch.float64)
return jagged_from_list([a, b, c], offsets)
def _check_recompiles(self, fn, inputs1, inputs2, recompiles):
compile_count = [0]
def counter(gm, example_inputs):
compile_count[0] += 1
return gm
compiled_f = torch.compile(fn, fullgraph=True, backend=counter, dynamic=True)
out = compiled_f(*inputs1)
self.assertEqual(compile_count[0], 1)
out = compiled_f(*inputs2)
self.assertEqual(compile_count[0], 2 if recompiles else 1)
def test_unary_does_not_recompile(self):
nt1, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((3, 4, 5), 4), None)
self._check_recompiles(lambda nt1: nt1.sin(), (nt1,), (nt2,), False)
def test_binary_does_not_recompile(self):
def binary(nt1, nt2):
if nt1.shape == nt2.shape:
return nt1 + nt2
else:
return nt1.sin()
# Basic binary
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, offsets = self._get_jagged_tensor(((3, 4, 5), 4), None)
nt4, _ = self._get_jagged_tensor(((3, 4, 5), 4), offsets)
self._check_recompiles(binary, (nt1, nt2), (nt3, nt4), False)
def test_binary_recompiles(self):
def binary(nt1, nt2):
if nt1.shape == nt2.shape:
return nt1 + nt2
else:
return nt1.sin()
# Binary recompiles because singleton ints no longer match
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
self._check_recompiles(binary, (nt1, nt2), (nt1, nt3), True)
def test_binary_recompiles_due_to_duck_sizing(self):
# Even though the input is unused, we still guard due to duck sizing
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
self._check_recompiles(lambda nt1, nt2: nt1.sin(), (nt1, nt2), (nt1, nt3), True)
# TODO: cannot parametrize this test class with device for some reason
def _test_autograd(self, backend):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64)
nt, offsets = jagged_from_list([a, b, c], None)
nt2, _ = jagged_from_list([a, b, c], offsets)
def fn1(nt1, nt2):
return (nt1 + nt2).sin().cos()
compiled_f = torch.compile(
fn1, fullgraph=True, backend="aot_eager", dynamic=True
)
out = compiled_f(nt, nt2)
out_buffer = ViewBufferFromNested.apply(out)
ga, gb, gc = torch.autograd.grad(out_buffer.sum(), (a, b, c))
out_ref = compiled_f(nt, nt2)
out_buffer_ref = ViewBufferFromNested.apply(out_ref)
ga_ref, gb_ref, gc_ref = torch.autograd.grad(out_buffer_ref.sum(), (a, b, c))
self.assertTrue(torch.allclose(ga, ga_ref))
self.assertTrue(torch.allclose(gb, gb_ref))
self.assertTrue(torch.allclose(gc, gc_ref))
def test_basic_autograd(self):
self._test_autograd("aot_eager")
@requires_cuda()
def test_basic_autograd_inductor(self):
self._test_autograd("inductor")
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()