blob: 779dfcf07aecef22e2bdd5ac6996f26f63dc6b1c [file] [log] [blame]
import torch
from torch.fx import GraphModule
from torch.fx.graph import (
Node,
Graph,
)
from torch.quantization import (
default_affine_fixed_qparams_fake_quant,
default_symmetric_fixed_qparams_fake_quant,
)
from ..quantization_mappings import (
get_static_quant_module_class,
get_dynamic_quant_module_class,
get_quantized_operator,
)
from ..utils import (
get_swapped_custom_module_class,
activation_is_statically_quantized,
activation_is_int8_quantized,
weight_is_statically_quantized,
get_qconfig_dtypes,
activation_dtype,
get_qparam_dict,
)
from torch.ao.quantization.quantize import (
is_activation_post_process,
)
from .pattern_utils import (
register_quant_pattern,
get_default_output_activation_post_process_map,
Pattern,
)
from .utils import (
_parent_name,
all_node_args_have_no_tensors,
quantize_node,
get_per_tensor_qparams,
get_linear_prepack_op_for_dtype,
create_qparam_nodes,
get_qconv_prepack_op,
get_qconv_op,
)
from ..qconfig import QConfigAny
from abc import ABC, abstractmethod
import operator
import warnings
from typing import Any, Callable, Dict, Union, Optional, Tuple, List
# -------------------------
# Pattern Registrations
# -------------------------
# 1. Post Training Static Quantization and Quantization Aware Training Patterns
# Base Pattern Handler
class QuantizeHandler(ABC):
""" Base handler class for the quantizer patterns
"""
def __init__(self, node: Node, modules: Dict[str, torch.nn.Module]):
""" Records pattern information in __init__, which will be used
in convert
"""
# this is an indicator of whether all the inputs are Node or not
# since some op might be quantized differently depending on whether
# all inputs are tensors or not, e.g. add/mul
self.num_tensor_args = len(node.args)
self.all_node_args_are_tensors = True
# the last node of the matched pattern
self.last_node = node
def _maybe_get_last_node_only_observer(
self,
modules: Dict[str, torch.nn.Module]
) -> Optional[torch.nn.Module]:
"""
If the last node of the pattern is observed, return the observer
instance. Otherwise, return None.
"""
for maybe_obs_node, _ in self.last_node.users.items():
if maybe_obs_node.op == 'call_module':
maybe_obs = modules[str(maybe_obs_node.target)]
if is_activation_post_process(maybe_obs):
return maybe_obs
return None
def input_output_observed(self) -> bool:
"""
Returns True if the pattern matched to this qhandler could be
be observed, and False it it should not be observed.
"""
return True
def is_general_tensor_value_op(self) -> bool:
"""
Returns True if the operator works for both floating point and
quantized input, and does some computation based on the input Tensor,
so we need to insert observer/fake_quant for the output of the
operator since the distribution of values is different for input and output
Tensors (for HistogramObserver)
while they share the same quantization parameters
Example: avgpool2d
"""
return False
def is_general_tensor_shape_op(self) -> bool:
""" Similar to is_general_tensor_value_op, this is a check
for ops that works for both floating point and quantized input,
that only re-arranges the Tensor values or query some metadata about the Tensor
We don't insert observer/fake_quant for the output of these operators
Example: reshape, transpose, maxpool2d
"""
return False
def should_insert_observer_for_output(
self,
qconfig: Any,
model_is_training: bool,
) -> bool:
"""
Returns true if an observer should be inserted for the output of
the pattern matched to this QuantizeHandler instance during the
prepare step.
"""
# TODO(future PR): potentially clean up and deduplicate these
# mappings.
return self.all_node_args_are_tensors and self.input_output_observed()
def should_mark_output_quantized_from_input_quantized_status(
self,
qconfig: QConfigAny
) -> bool:
"""
Returns true if after convert, the output of the matched pattern is
quantized iff the first input is also quantized.
"""
return False
def get_activation_ctr(
self,
qconfig: Any,
pattern: Pattern,
) -> Optional[Callable]:
"""
Returns the constructor for the activation observer which should be
used for the pattern matched to this handler. Some handlers override
this to a different value than what is specified in the qconfig.
"""
return qconfig.activation
def is_output_quantized(self, qconfig, is_reference):
""" Returns true if the output node of convert is quantized
when is_reference is False, we would return float node when a certain dtype
combination is not supported (since fbgemm/qnnpack only support certain dtype
combinations), so the output may be float, but when is_reference is True,
we support all dtype combinations so the output will always be quantized.
"""
return True
@abstractmethod
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
""" Convert the given node to a quantized node and insert
it to the quantized graph
"""
return NotImplemented
# Binary op configs
# Supported combinations are:
# quant_type | activation (compute_type) | weight
# static quint8 qint8
# tuple (activation_dtype, weight_dtype, compute_dtype)
# these are supported types for common binary ops like add/mul etc.
all_dtypes = [
(torch.quint8, torch.qint8, None),
(torch.float16, torch.float16, None),
]
fp16_dtypes = [
(torch.float16, torch.float16, None)
]
int8_dtypes = [
(torch.quint8, torch.qint8, None),
]
binary_op_supported_dtypes : Dict[Union[Callable, str], List[Tuple[torch.dtype, torch.dtype, None]]] = {
operator.add: all_dtypes,
torch.add: all_dtypes,
operator.mul: all_dtypes,
torch.mul: all_dtypes,
torch.bmm: fp16_dtypes,
torch.sub: fp16_dtypes,
operator.sub: fp16_dtypes,
torch.div: fp16_dtypes,
operator.truediv: fp16_dtypes,
}
default_op_supported_dtypes = {
torch.nn.ConvTranspose1d: int8_dtypes,
torch.nn.ConvTranspose2d: int8_dtypes,
torch.nn.ELU: int8_dtypes,
torch.nn.LeakyReLU: int8_dtypes,
torch.nn.Hardswish: int8_dtypes,
torch.nn.InstanceNorm1d: int8_dtypes,
torch.nn.InstanceNorm2d: int8_dtypes,
torch.nn.InstanceNorm3d: int8_dtypes,
torch.nn.LayerNorm: all_dtypes,
torch.nn.SiLU: fp16_dtypes,
torch.nn.Mish: fp16_dtypes,
torch.nn.GELU: int8_dtypes,
torch.nn.Softmax: int8_dtypes,
torch.nn.functional.elu: int8_dtypes,
torch.nn.functional.hardswish: int8_dtypes,
torch.nn.functional.instance_norm: int8_dtypes,
torch.nn.functional.layer_norm: all_dtypes,
torch.nn.functional.leaky_relu: int8_dtypes,
torch.nn.functional.silu: fp16_dtypes,
torch.nn.functional.mish: fp16_dtypes,
torch.nn.functional.gelu: int8_dtypes,
torch.nn.functional.softmax: int8_dtypes,
torch.sum: fp16_dtypes,
}
QAT_CONV_MODULE_CLASSES = \
(torch.nn.qat.Conv2d,
torch.nn.qat.Conv3d,
torch.nn.intrinsic.qat.ConvBn2d,
torch.nn.intrinsic.qat.ConvBnReLU2d,
torch.nn.intrinsic.qat.ConvReLU2d,
torch.nn.intrinsic.qat.ConvBn3d,
torch.nn.intrinsic.qat.ConvBnReLU3d,
torch.nn.intrinsic.qat.ConvReLU3d)
##########################
# Helper Functions
##########################
def _load_weight_qparams(
self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
key = prefix + "_weight_qparams"
if key in state_dict:
self._weight_qparams = state_dict[key]
state_dict.pop(key)
def _save_weight_qparams(self, destination, prefix, keep_vars):
for attr_name in dir(self):
if "_weight_qparams" == attr_name and \
isinstance(getattr(self, attr_name), dict):
weight_qparams = getattr(self, attr_name)
destination[prefix + attr_name] = weight_qparams
def _to_reference(float_module, weight_qparams):
""" Make a weighted float module (e.g. conv and linear )a reference module by
attaching _weight_qparams that records the qparams for weight
and change the name for the module so that it's recognized
when people print the model
"""
float_module._weight_qparams = weight_qparams
float_module._register_state_dict_hook(_save_weight_qparams)
float_module._register_load_state_dict_pre_hook(_load_weight_qparams, with_module=True)
float_module_name = float_module._get_name()
def _get_name():
return float_module_name + "(Reference)"
float_module._get_name = _get_name
@register_quant_pattern(operator.add)
@register_quant_pattern(operator.sub)
@register_quant_pattern(operator.mul)
@register_quant_pattern(operator.truediv)
@register_quant_pattern(torch.add)
@register_quant_pattern(torch.sub)
@register_quant_pattern(torch.mul)
@register_quant_pattern(torch.div)
@register_quant_pattern(torch.bmm)
@register_quant_pattern((torch.nn.ReLU, operator.add))
@register_quant_pattern((torch.nn.ReLU, operator.mul))
@register_quant_pattern((torch.nn.ReLU, torch.add))
@register_quant_pattern((torch.nn.ReLU, torch.mul))
@register_quant_pattern((torch.nn.functional.relu, operator.add))
@register_quant_pattern((torch.nn.functional.relu, operator.mul))
@register_quant_pattern((torch.nn.functional.relu, torch.add))
@register_quant_pattern((torch.nn.functional.relu, torch.mul))
class BinaryOpQuantizeHandler(QuantizeHandler):
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
self.relu_node = None
if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \
(node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)):
self.relu_node = node
node = node.args[0] # type: ignore[assignment]
self.binary_op_node = node
self.binary_op = node.target
# determine how many of the first two args are Tensors (versus scalars)
# this distinguishes things like "x + y" from "x + 2" or "2 + x"
self.num_tensor_args = 0
cache_for_no_tensor_check: Dict[Node, bool] = dict()
for arg_idx in range(len(self.binary_op_node.args)):
arg = self.binary_op_node.args[arg_idx]
if isinstance(arg, Node) and (not all_node_args_have_no_tensors(arg, modules, cache_for_no_tensor_check)):
self.num_tensor_args += 1
self.all_node_args_are_tensors = \
(self.num_tensor_args == len(self.binary_op_node.args))
qbin_op_mapping: Dict[Union[Callable, str], Callable] = {
operator.add: torch.ops.quantized.add,
torch.add: torch.ops.quantized.add,
operator.mul: torch.ops.quantized.mul,
torch.mul: torch.ops.quantized.mul,
}
qbin_relu_op_mapping: Dict[Union[Callable, str], Callable] = {
operator.add: torch.ops.quantized.add_relu,
torch.add: torch.ops.quantized.add_relu,
operator.mul: torch.ops.quantized.mul_relu,
torch.mul: torch.ops.quantized.mul_relu,
}
# corresponding quantized op
self.quantized_binary_op: Optional[Callable] = None
if self.binary_op in qbin_op_mapping:
self.quantized_binary_op = qbin_relu_op_mapping[self.binary_op] \
if self.relu_node is not None \
else qbin_op_mapping[self.binary_op]
def should_insert_observer_for_output(
self,
qconfig: Any,
model_is_training: bool,
) -> bool:
"""
Returns true if an observer should be inserted for the output of
the pattern matched to this QuantizeHandler instance during the
prepare step.
"""
if self.num_tensor_args == 1:
return True
elif self.all_node_args_are_tensors and self.input_output_observed():
return True
else:
return False
def is_general_tensor_value_op(self) -> bool:
return self.num_tensor_args == 1
def input_output_observed(self):
# for x + y where x and y are scalars, we do not observe anything
return self.num_tensor_args > 0
def is_output_quantized(self, qconfig, is_reference):
dtypes = get_qconfig_dtypes(qconfig)
if not is_reference:
return self.binary_op in binary_op_supported_dtypes and \
dtypes in binary_op_supported_dtypes[self.binary_op]
return True
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if self.num_tensor_args == 0:
# example: x + y, when x and y are scalars
return quantized_graph.node_copy(
node, load_arg(quantized=None))
dtypes = get_qconfig_dtypes(qconfig)
if is_reference:
act_dtype = activation_dtype(qconfig)
if act_dtype == torch.float:
return quantized_graph.node_copy(node, load_arg(quantized=torch.float))
else:
if self.num_tensor_args == 2:
# make sure both inputs are quantized to act_dtype
load_arg(quantized={0: act_dtype, 1: act_dtype})(self.binary_op_node.args)
args = load_arg(quantized=torch.float)(self.binary_op_node.args)
kwargs = load_arg(quantized=torch.float)(self.binary_op_node.kwargs)
op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float))
def modified_load_arg(n: Node):
if n.name == self.binary_op_node.name:
return op_out
else:
return load_arg(quantized=torch.float)(n)
if self.relu_node:
op_out = quantized_graph.node_copy(self.relu_node, modified_load_arg)
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
return quantize_node(
op_out, activation_post_process,
node, modules, quantized_graph, node_name_to_scope, is_input=False)
elif not is_reference and self.binary_op in binary_op_supported_dtypes and \
dtypes in binary_op_supported_dtypes[self.binary_op]:
if dtypes in [(torch.quint8, torch.qint8, None)]:
assert self.quantized_binary_op is not None
if self.num_tensor_args == 1:
# add/mul scalar
first_arg = self.binary_op_node.args[0]
cache_for_no_tensor_check: Dict[Node, bool] = dict()
if isinstance(first_arg, Node) and (
not all_node_args_have_no_tensors(
first_arg, modules, cache_for_no_tensor_check)):
quantized_index = 0
else:
quantized_index = 1
return quantized_graph.create_node(
'call_function', self.quantized_binary_op,
load_arg(quantized=[quantized_index])(self.binary_op_node.args), self.binary_op_node.kwargs)
else:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[operator]
scale = float(scale)
zero_point = int(zero_point)
scale_arg, zero_point_arg = \
create_qparam_nodes(
node.name, scale, zero_point, modules,
quantized_graph, node_name_to_scope)
kwargs = {**self.binary_op_node.kwargs}
add_args = (*load_arg(quantized=activation_dtype(qconfig))(self.binary_op_node.args), scale_arg, zero_point_arg)
op = quantized_graph.create_node(
'call_function', self.quantized_binary_op, add_args, kwargs)
return op
else:
assert dtypes == (torch.float16, torch.float16, None)
# TODO (refactor) this is duplicated, maybe have a helper function
if self.relu_node:
op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float))
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
else:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantized_graph.create_node(
"call_method", "to", (op_out, torch.float16,), {}
)
else:
# leave the op unquantized if the dtype,reference combination is not supported
warnings.warn(
"dtype combination: {} is not "
"supported by {} for is_reference={}. "
"Supported non-reference dtype combinations are: {} "
"".format(dtypes,
self.binary_op,
is_reference,
binary_op_supported_dtypes[self.binary_op]
)
)
if self.relu_node:
op_out = quantized_graph.node_copy(self.binary_op_node, load_arg(quantized=torch.float))
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
return quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
else:
return quantized_graph.node_copy(node, load_arg(quantized=torch.float))
@register_quant_pattern(torch.cat)
class CatQuantizeHandler(QuantizeHandler):
def is_general_tensor_value_op(self) -> bool:
return True
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if not self.all_node_args_are_tensors:
return NotImplemented
if is_reference:
act_dtype = activation_dtype(qconfig)
if act_dtype == torch.float:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return op_out
else:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
# make sure the first argument is quantized to act_dtype
load_arg(quantized={0: act_dtype})(node.args)
args = list(load_arg(quantized=torch.float)(node.args))
kwargs = load_arg(quantized=torch.float)(node.kwargs)
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantize_node(
op_out,
activation_post_process,
node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
else:
return quantized_graph.node_copy(node, load_arg(quantized=torch.quint8))
# handle conv, maybe followed by relu
# NB: matching order is reversed, that is we match from the bottom of this list to the beginning
@register_quant_pattern(torch.nn.Conv1d)
@register_quant_pattern(torch.nn.Conv2d)
@register_quant_pattern(torch.nn.Conv3d)
@register_quant_pattern(torch.nn.functional.conv1d)
@register_quant_pattern(torch.nn.functional.conv2d)
@register_quant_pattern(torch.nn.functional.conv3d)
# TODO: add qat.Conv1d
@register_quant_pattern(torch.nn.qat.Conv2d)
@register_quant_pattern(torch.nn.qat.Conv3d)
@register_quant_pattern(torch.nn.intrinsic.ConvReLU1d)
@register_quant_pattern(torch.nn.intrinsic.ConvReLU2d)
@register_quant_pattern(torch.nn.intrinsic.ConvReLU3d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBn1d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBn2d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBn3d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU1d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU2d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvBnReLU3d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvReLU2d)
@register_quant_pattern(torch.nn.intrinsic.qat.ConvReLU3d)
@register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv1d))
@register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv2d))
@register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.conv3d))
@register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv1d))
@register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv2d))
@register_quant_pattern((torch.nn.ReLU, torch.nn.functional.conv3d))
# just for error checks
@register_quant_pattern((torch.nn.ReLU, torch.nn.Conv1d))
@register_quant_pattern((torch.nn.ReLU, torch.nn.Conv2d))
@register_quant_pattern((torch.nn.ReLU, torch.nn.Conv3d))
@register_quant_pattern((torch.nn.functional.relu, torch.nn.Conv2d))
@register_quant_pattern((torch.nn.functional.relu, torch.nn.Conv3d))
class ConvReluQuantizeHandler(QuantizeHandler):
def __init__(self, node: Node, modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
self.relu_node = None
if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \
(node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)):
self.relu_node = node
node = node.args[0] # type: ignore[assignment]
self.conv_node = node
if node.op == "call_module":
self.conv = modules[str(self.conv_node.target)]
elif node.op == "call_function":
self.conv = node.target # type: ignore[assignment]
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
# Supported combinations are:
# quant_type | activation (compute_type) | weight
# static quint8 qint8
# tuple (activation_dtype, weight_dtype, compute_dtype)
supported_dtypes = [
(torch.quint8, torch.qint8, None),
]
# TODO: is_reference option for conv module
dtypes = get_qconfig_dtypes(qconfig)
# leave the op unquantized if the dtype combination is not supported
if not is_reference and dtypes not in supported_dtypes:
warnings.warn(
"dtype combination: {} is not "
"supported by Conv "
"supported dtype combinations are: {}".format(dtypes, supported_dtypes))
if self.relu_node:
conv_out = quantized_graph.node_copy(self.conv_node, load_arg(quantized=torch.float))
relu_args = [conv_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
return quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
else:
return quantized_graph.node_copy(node, load_arg(quantized=torch.float))
activation_int8_quantized = activation_is_int8_quantized(qconfig)
if self.conv_node.op == 'call_module':
# note that relu should already be fused into conv module in the fusion step
assert self.relu_node is None, 'conv module and relu fusion is not executed, ' \
'please make sure to run fusion before prepare'
output_activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert output_activation_post_process is not None
if is_reference:
# produce dequant - float_op - quant pattern
dtype = torch.float
if activation_int8_quantized:
dtype = activation_dtype(qconfig)
activation = load_arg(quantized=dtype)(self.conv_node.args[0])
args = load_arg(quantized=torch.float)(self.conv_node.args)
# Get the float conv and attach quantization scheme and quantization
# parameters of weight to the module
# and qparam is a dictionary of
# {"qscheme": ..., "scale": ..., "zero_point": ...} for per tensor quantization or
# {"qscheme": ..., "scale": ..., "zero_point": ..., "axis": ...} for per channel quantization
if isinstance(
self.conv,
QAT_CONV_MODULE_CLASSES):
# case 1. converting qat conv module to
# a float conv module, we need to attch
# weight fake_quant to the conv module,
# weight fake_quant is assumed to be run during
# QAT so we don't need to run it again here
float_conv = self.conv.to_float()
# change qat conv to conv
parent_name, name = _parent_name(self.conv_node.target)
setattr(modules[parent_name], name, float_conv)
if isinstance(float_conv, torch.nn.intrinsic._FusedModule):
float_conv = float_conv[0]
weight_post_process = self.conv.weight_fake_quant
else:
# case 2. converting a conv module/fused conv module
# to float conv module, we need to attach
# weight observer to the conv module and run it
# with conv weight
float_conv = self.conv
if isinstance(self.conv, torch.nn.intrinsic._FusedModule):
float_conv = self.conv[0]
assert qconfig is not None
weight_post_process = qconfig.weight()
# run weight observer
weight_post_process(float_conv.weight)
weight_qparams = get_qparam_dict(weight_post_process)
_to_reference(float_conv, weight_qparams)
op_out = quantized_graph.create_node(
'call_module',
self.conv_node.target,
args, {})
if output_activation_post_process:
op_out = quantize_node(
op_out,
output_activation_post_process,
node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
return op_out
else:
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
additional_static_quant_mapping = convert_custom_config_dict.get("static", {})
# 1. attach activation post process to module
self.conv.activation_post_process = output_activation_post_process
# 2. select quantized class
qconv_cls = get_static_quant_module_class(
type(self.conv), additional_static_quant_mapping, is_reference=is_reference)
quantized = qconv_cls.from_float(self.conv)
parent_name, name = _parent_name(self.conv_node.target)
setattr(modules[parent_name], name, quantized)
return quantized_graph.create_node(
'call_module',
self.conv_node.target,
(load_arg(quantized=torch.quint8)(self.conv_node.args[0]),),
{})
else: # call_function
assert self.conv_node.op == "call_function"
if is_reference:
# make sure the input and weight are quantized to torch.quint8, torch.qint8, respectively
load_arg(quantized={0: torch.quint8, 1: torch.qint8})(self.conv_node.args)
args = load_arg(quantized=torch.float)(self.conv_node.args)
kwargs = load_arg(quantized=torch.float)(self.conv_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", self.conv, args, kwargs)
if self.relu_node:
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
if activation_int8_quantized:
root_module = modules['']
act_post_process_name = self.relu_node.name if self.relu_node else self.conv_node.name
act_post_process_node = self.relu_node if self.relu_node else self.conv_node
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
return quantize_node(
op_out,
activation_post_process,
act_post_process_node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
else:
# output for dynamically quantized conv op is not quantized
return op_out
else:
assert len(self.conv_node.args) >= 7, \
"only conv2d calls with all arguments specified is supported right now in is_reference=False option"
# make sure the input and weight are quantized to torch.quint8, torch.qint8, respectively
args = load_arg(quantized={0: torch.quint8, 1: torch.qint8})(self.conv_node.args)
# pack weight
weight = load_arg(quantized=torch.qint8)(self.conv_node.args[1])
other_args = load_arg(quantized=torch.float)(self.conv_node.args[2:])
bias, stride, padding, dilation, groups = other_args
if self.conv == torch.nn.functional.conv1d:
# F.conv1d can take `int` as well as `list[int]` for stride,
# padding, dilation, but the prepack op cannot. Convert
# these to lists if needed.
stride = [stride] if isinstance(stride, int) else stride
padding = [padding] if isinstance(padding, int) else padding
dilation = [dilation] if isinstance(dilation, int) else dilation
prepack_args = (weight, bias, stride, padding, dilation, groups)
prepack_op = get_qconv_prepack_op(self.conv)
packed_weight = quantized_graph.create_node(
"call_function", prepack_op, prepack_args, {})
assert activation_int8_quantized, \
"currently only static quantization is supported for conv"
# construct conv input
if activation_int8_quantized:
qconv_op = get_qconv_op(self.conv, self.relu_node is not None)
conv_input = load_arg(quantized=torch.quint8)(self.conv_node.args[0])
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
scale, zero_point, _ = get_per_tensor_qparams(activation_post_process)
scale_node, zero_point_node = \
create_qparam_nodes(
self.conv_node.name, scale, zero_point, modules,
quantized_graph, node_name_to_scope)
qconv_args = (conv_input, packed_weight, scale_node, zero_point_node)
kwargs = load_arg(quantized=torch.float)(self.conv_node.kwargs)
op = quantized_graph.create_node(
'call_function', qconv_op, qconv_args, kwargs)
# Store the name of the fused op to get the path of node after fusion as well.
# TODO: may need to change the key to Node regenerate the map in each transformation,
# since we might not be able to rely on the name
node_name_to_scope[op.name] = node_name_to_scope[self.conv_node.name]
return op
else:
# conv2d_dyanmic branch
raise Exception("Only static quant is supported for conv")
@register_quant_pattern(torch.nn.Linear)
@register_quant_pattern(torch.nn.functional.linear)
@register_quant_pattern(torch.nn.qat.Linear)
@register_quant_pattern(torch.nn.intrinsic.LinearReLU)
@register_quant_pattern(torch.nn.intrinsic.qat.LinearReLU)
@register_quant_pattern((torch.nn.functional.relu, torch.nn.functional.linear))
@register_quant_pattern((torch.nn.ReLU, torch.nn.functional.linear))
# for error checks
@register_quant_pattern((torch.nn.ReLU, torch.nn.Linear))
@register_quant_pattern((torch.nn.functional.relu, torch.nn.Linear))
class LinearReLUQuantizeHandler(QuantizeHandler):
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
self.relu_node = None
if (node.op == 'call_function' and node.target is torch.nn.functional.relu) or \
(node.op == 'call_module' and isinstance(modules[str(node.target)], torch.nn.ReLU)):
self.relu_node = node
node = node.args[0] # type: ignore[assignment]
self.linear_node = node
if node.op == 'call_module':
self.linear = modules[str(self.linear_node.target)]
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
# Supported combinations are:
# quant_type | activation (compute_type) | weight
# static quint8 qint8
# dynamic float32 (quint8) qint8
# weight_only float32 float16
# tuple (activation_dtype, weight_dtype, compute_dtype)
supported_dtypes = [
(torch.quint8, torch.qint8, None),
(torch.float32, torch.qint8, torch.quint8),
(torch.float32, torch.float16, None),
# static float16 quantization
(torch.float16, torch.float16, None),
]
dtypes = get_qconfig_dtypes(qconfig)
# leave the op unquantized if the dtype combination is not supported
if not is_reference and dtypes not in supported_dtypes:
warnings.warn(
"dtype combination: {} is not "
"supported by Linear "
"supported dtype combinations are: {}".format(dtypes, supported_dtypes))
if self.relu_node:
op_out = quantized_graph.node_copy(self.linear_node, load_arg(quantized=torch.float))
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
return quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
else:
return quantized_graph.node_copy(node, load_arg(quantized=None))
activation_int8_quantized = activation_is_int8_quantized(qconfig)
activation_statically_quantized = activation_is_statically_quantized(qconfig)
weight_dtype = dtypes[1]
# TODO: reference_model option for linear module
if self.linear_node.op == 'call_module':
output_activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
# note that relu should already be fused into linear modul in the fusion step
assert self.relu_node is None, 'linear module and relu fusion is not executed, ' \
'please make sure to run fusion before prepare'
if is_reference:
# produce dequant - float_op - quant pattern
dtype = torch.float
if activation_int8_quantized:
dtype = activation_dtype(qconfig)
activation = load_arg(quantized=dtype)(self.linear_node.args[0])
args = load_arg(quantized=torch.float)(self.linear_node.args)
# Get the float linear and attach qscheme and qparams
# the the module
float_linear = self.linear
fused_linear = None
if isinstance(float_linear, (torch.nn.qat.Linear, torch.nn.intrinsic.qat.LinearReLU)):
float_linear = float_linear.to_float()
# change qat linear to linear
parent_name, name = _parent_name(self.linear_node.target)
setattr(modules[parent_name], name, float_linear)
# Attach weight fake quant to the linear module
if isinstance(float_linear, torch.nn.intrinsic.LinearReLU):
fused_linear = float_linear
float_linear = float_linear[0]
weight_post_process = self.linear.weight_fake_quant
else:
if isinstance(float_linear, torch.nn.intrinsic.LinearReLU):
fused_linear = float_linear
float_linear = self.linear[0] # type: ignore[index]
# Attach the weight observer to the module
weight_post_process = qconfig.weight() # type: ignore[union-attr]
# Run weight observer
weight_post_process(float_linear.weight) # type: ignore[operator]
weight_qparams = get_qparam_dict(weight_post_process)
# TODO: include the configuration in backend_config_dict
# we can have a map from module to reference module
# and allow user to register new ones
qlinear_cls = get_static_quant_module_class(
type(float_linear), is_reference=is_reference)
ref_linear = qlinear_cls.from_float(float_linear, weight_qparams)
# if the parent is a fused linear (Sequential), we can replace the first
# item to ref linear, otherwise we can update
# the linear instance in the module tree
if fused_linear is not None:
fused_linear[0] = ref_linear
else:
parent_name, name = _parent_name(self.linear_node.target)
setattr(modules[parent_name], name, ref_linear)
op_out = quantized_graph.create_node(
'call_module',
self.linear_node.target,
args, {})
if output_activation_post_process:
op_out = quantize_node(
op_out,
output_activation_post_process,
node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
return op_out
else:
# 1. attach output activation post process to linear module
if output_activation_post_process:
self.linear.activation_post_process = output_activation_post_process
# 2. select corresponding quantized linear class for the float linear class
if activation_int8_quantized:
additional_static_quant_mapping = convert_custom_config_dict.get("static", {})
qlinear = get_static_quant_module_class(
type(self.linear), additional_static_quant_mapping)
else:
assert dtypes in [
(torch.float32, torch.qint8, torch.quint8),
(torch.float32, torch.float16, None),
], f"dtype {dtypes} not supported yet"
additional_dynamic_quant_mapping = convert_custom_config_dict.get("dynamic", {})
qlinear = get_dynamic_quant_module_class(type(self.linear), additional_dynamic_quant_mapping)
quantized = qlinear.from_float(self.linear)
parent_name, name = _parent_name(self.linear_node.target)
setattr(modules[parent_name], name, quantized)
# activation needs to be quantized for static quantization
dtype = torch.float
if activation_int8_quantized:
dtype = activation_dtype(qconfig)
return quantized_graph.create_node(
'call_module',
self.linear_node.target,
(load_arg(quantized=dtype)(self.linear_node.args[0]),), {})
else: # call_function
assert self.linear_node.op == 'call_function'
if is_reference:
quantized_input_dtypes = [torch.float, torch.float]
if activation_int8_quantized:
quantized_input_dtypes[0] = torch.quint8
if weight_is_statically_quantized(qconfig):
quantized_input_dtypes[1] = torch.qint8
args = load_arg(quantized=quantized_input_dtypes)(self.linear_node.args)
args = load_arg(quantized=torch.float)(self.linear_node.args)
kwargs = load_arg(quantized=torch.float)(self.linear_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", torch.nn.functional.linear, args, kwargs)
if self.relu_node:
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
if activation_statically_quantized:
# quantize output for statically quantized linear op
root_module = modules['']
act_post_process_name = self.relu_node.name if self.relu_node else self.linear_node.name
act_post_process_node = self.relu_node if self.relu_node else self.linear_node
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
return quantize_node(
op_out,
activation_post_process,
act_post_process_node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
else:
# output for dynamically quantized linear op is not quantized
return op_out
else: # non-reference option
# prepacking weights for static int8 quant and dynamic quant
if dtypes != (torch.float16, torch.float16, None):
# linear args
# (x, weight, bias, ...)
# TODO: the name should be weight is int8 quantized
weight_quantized = weight_is_statically_quantized(qconfig)
dtype = weight_dtype if weight_quantized else torch.float
linear_weight = load_arg(quantized=dtype)(self.linear_node.args[1])
# get other arguments
kwargs = {**load_arg(quantized=torch.float)(self.linear_node.kwargs)}
# pack weight
bias = None
# all args after bias, including bias
other_args = load_arg(quantized=torch.float)(self.linear_node.args[2:])
if len(self.linear_node.args) > 2:
bias = load_arg(quantized=torch.float)(self.linear_node.args[2])
other_args = other_args[1:] # remove the bias argument
else:
assert 'bias' in kwargs, \
'expect bias provided as a keyword argument when it is not a positional argument'
bias = kwargs['bias']
kwargs.pop('bias')
prepack_args = (linear_weight, bias)
prepack_op = get_linear_prepack_op_for_dtype(weight_dtype)
packed_weight = quantized_graph.create_node(
'call_function', prepack_op, prepack_args, {})
# construct linear input
if activation_int8_quantized:
qlinear_op = torch.ops.quantized.linear_relu if self.relu_node else torch.ops.quantized.linear
linear_input = load_arg(quantized=torch.quint8)(self.linear_node.args[0])
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
scale, zero_point, _ = get_per_tensor_qparams(activation_post_process)
scale_node, zero_point_node = \
create_qparam_nodes(
self.linear_node.name, scale, zero_point, modules,
quantized_graph, node_name_to_scope)
qlinear_args = (linear_input, packed_weight, scale_node, zero_point_node)
op = quantized_graph.create_node(
"call_function", qlinear_op, qlinear_args, kwargs)
# Store the name of the fused op to get the path of node after fusion as well.
# TODO: may need to change the key to Node regenerate the map in each transformation,
# since we might not be able to rely on the name
node_name_to_scope[op.name] = node_name_to_scope[self.linear_node.name]
return op
elif dtypes in [(torch.float32, torch.qint8, torch.quint8),
(torch.float32, torch.float16, None)]:
# choose linear dynamic or linear dynamic fp16 op based on weight dtype
if weight_dtype == torch.qint8:
if self.relu_node:
qlinear_op = torch.ops.quantized.linear_relu_dynamic
else:
qlinear_op = torch.ops.quantized.linear_dynamic
else:
if self.relu_node:
qlinear_op = torch.ops.quantized.linear_relu_dynamic_fp16
else:
qlinear_op = torch.ops.quantized.linear_dynamic_fp16
linear_input = load_arg(quantized=torch.float)(self.linear_node.args[0])
qlinear_args = (linear_input, packed_weight) # type: ignore[assignment]
op_out = quantized_graph.create_node(
"call_function", qlinear_op, qlinear_args, kwargs)
# Store the name of the dynamic op to get the path of node after replacement as well.
# TODO: may need to change the key to Node regenerate the map in each transformation,
# since we might not be able to rely on the name
node_name_to_scope[op_out.name] = node_name_to_scope[self.linear_node.name]
return op_out
else:
assert dtypes == (torch.float16, torch.float16, None)
# TODO (refactor) this is duplicated, maybe have a helper function
if self.relu_node:
op_out = quantized_graph.node_copy(self.linear_node, load_arg(quantized=torch.float))
relu_args = [op_out]
relu_args.extend(load_arg(quantized=torch.float)(self.relu_node.args[1:]))
relu_kwargs = load_arg(quantized=torch.float)(self.relu_node.kwargs)
op_out = quantized_graph.create_node(
"call_function", torch.nn.functional.relu, tuple(relu_args), relu_kwargs)
else:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantized_graph.create_node(
"call_method", "to", (op_out, torch.float16), {})
@register_quant_pattern(torch.nn.BatchNorm2d)
@register_quant_pattern(torch.nn.BatchNorm3d)
@register_quant_pattern(torch.nn.intrinsic.BNReLU2d)
@register_quant_pattern(torch.nn.intrinsic.BNReLU3d)
class BatchNormQuantizeHandler(QuantizeHandler):
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
assert node.op == 'call_module'
self.bn_node = node
self.bn = modules[str(self.bn_node.target)]
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
additional_static_quant_mapping = convert_custom_config_dict.get("static", {})
# 1. attach activation post process to module
output_activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert output_activation_post_process is not None
if is_reference:
# produce dequant - float_op - quant pattern
dtype = activation_dtype(qconfig)
activation = load_arg(quantized=dtype)(self.bn_node.args[0])
args = load_arg(quantized=torch.float)(self.bn_node.args)
op_out = quantized_graph.create_node(
"call_module",
self.bn_node.target,
args,
{})
if output_activation_post_process:
op_out = quantize_node(
op_out,
output_activation_post_process,
node,
modules,
quantized_graph,
node_name_to_scope,
is_input=False)
return op_out
else:
self.bn.activation_post_process = output_activation_post_process
qbn_cls = get_static_quant_module_class(type(self.bn), additional_static_quant_mapping)
quantized = qbn_cls.from_float(self.bn)
parent_name, name = _parent_name(self.bn_node.target)
setattr(modules[parent_name], name, quantized)
return quantized_graph.create_node(
'call_module',
self.bn_node.target,
load_arg(quantized=[0])(self.bn_node.args),
load_arg(quantized=torch.float)(self.bn_node.kwargs))
@register_quant_pattern(torch.nn.Embedding)
@register_quant_pattern(torch.nn.EmbeddingBag)
class EmbeddingQuantizeHandler(QuantizeHandler):
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
def input_output_observed(self) -> bool:
return False
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
# Supported combinations are:
# quant_type | activation | weight | activation_compute_type
# weight_only | float32 | quint8 | None
# weight_only | float32 | quint4x2 | None
# tuple (activation_dtype, weight_dtype, compute_dtype)
supported_dtypes = [
(torch.float32, torch.quint8, None),
(torch.float32, torch.quint4x2, None),
]
assert node.op == 'call_module'
emb_node = node
dtypes = get_qconfig_dtypes(qconfig)
# leave the op unquantized if the dtype combination is not supported
if dtypes not in supported_dtypes:
warnings.warn(
"dtype combination: {} is not "
"supported by Embedding/EmbeddingBag, "
"supported dtype combinations are: {}".format(dtypes, supported_dtypes))
return quantized_graph.node_copy(node, load_arg(quantized=None))
emb = modules[str(emb_node.target)]
qemb = get_static_quant_module_class(type(emb))
quantized = qemb.from_float(emb)
parent_name, name = _parent_name(emb_node.target)
setattr(modules[parent_name], name, quantized)
return quantized_graph.create_node(
'call_module',
emb_node.target,
load_arg(quantized=torch.float)(emb_node.args),
load_arg(quantized=torch.float)(emb_node.kwargs))
# TODO (maybe): merge with embedding quantize handler
@register_quant_pattern(torch.nn.GRUCell)
@register_quant_pattern(torch.nn.LSTMCell)
@register_quant_pattern(torch.nn.RNNCell)
@register_quant_pattern(torch.nn.LSTM)
class RNNDynamicQuantizeHandler(QuantizeHandler):
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
def input_output_observed(self) -> bool:
return False
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
# Supported combinations are:
# quant_type | activation | weight | activation_compute_type
# dynamic | float32 | qint8 | quint8
# dynamic | float32 | float16 | None
# tuple (activation_dtype, weight_dtype, compute_dtype)
supported_dtypes = [
(torch.float32, torch.qint8, torch.quint8),
(torch.float32, torch.float16, None),
]
assert node.op == 'call_module'
dtypes = get_qconfig_dtypes(qconfig)
# leave the op unquantized if the dtype combination is not supported
if dtypes not in supported_dtypes:
warnings.warn(
"dtype combination: {} is not "
"supported by Embedding/EmbeddingBag, "
"supported dtype combinations are: {}".format(dtypes, supported_dtypes))
return quantized_graph.node_copy(node, load_arg(quantized=None))
module = modules[str(node.target)]
qmodule_cls = get_dynamic_quant_module_class(type(module))
qmodule = qmodule_cls.from_float(module)
parent_name, name = _parent_name(node.target)
setattr(modules[parent_name], name, qmodule)
return quantized_graph.create_node(
'call_module',
node.target,
load_arg(quantized=torch.float)(node.args),
load_arg(quantized=torch.float)(node.kwargs))
ARGS_TO_SKIP = {
torch._ops.ops.quantized.hardswish: ['inplace'],
torch._ops.ops.quantized.elu: ['inplace'],
torch._ops.ops.quantized.instance_norm:
['running_mean', 'running_var', 'use_input_stats', 'momentum'],
}
@register_quant_pattern(torch.nn.ConvTranspose1d)
@register_quant_pattern(torch.nn.ConvTranspose2d)
@register_quant_pattern(torch.nn.ELU)
@register_quant_pattern(torch.nn.LeakyReLU)
@register_quant_pattern(torch.nn.Hardswish)
@register_quant_pattern(torch.nn.InstanceNorm1d)
@register_quant_pattern(torch.nn.InstanceNorm2d)
@register_quant_pattern(torch.nn.InstanceNorm3d)
@register_quant_pattern(torch.nn.LayerNorm)
@register_quant_pattern(torch.nn.SiLU)
@register_quant_pattern(torch.nn.Mish)
# we currently only support reference patterns for these ops so they have been removed
# until they receive a proper fp16 kernel. To use the reference pattern, use a custom qconfig
# @register_quant_pattern(torch.nn.GELU)
# @register_quant_pattern(torch.nn.Softmax)
@register_quant_pattern(torch.nn.functional.elu)
@register_quant_pattern(torch.nn.functional.hardswish)
@register_quant_pattern(torch.nn.functional.instance_norm)
@register_quant_pattern(torch.nn.functional.layer_norm)
@register_quant_pattern(torch.nn.functional.leaky_relu)
@register_quant_pattern(torch.nn.functional.silu)
@register_quant_pattern(torch.nn.functional.mish)
# we currently only support reference patterns for these ops so they have been removed
# until they receive a proper fp16 kernel. To use the reference pattern, use a custom qconfig
# @register_quant_pattern(torch.nn.functional.gelu)
# @register_quant_pattern(torch.nn.functional.softmax)
@register_quant_pattern(torch.sum)
class DefaultNodeQuantizeHandler(QuantizeHandler):
""" Common quantized op, first input and first output will be quantized
"""
def __init__(
self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
if node.op == "call_function" or node.op == "call_method":
self.op = node.target
elif node.op == "call_module":
self.op = type(modules[str(node.target)])
def is_output_quantized(self, qconfig, is_reference):
dtypes = get_qconfig_dtypes(qconfig)
if not is_reference:
return self.op in default_op_supported_dtypes and \
dtypes in default_op_supported_dtypes[self.op]
return True
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if not self.all_node_args_are_tensors:
return NotImplemented
assert node.op in ['call_module', 'call_function'], 'Only call_module and ' + \
'call_function are handled in DefaultNode'
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
additional_static_quant_mapping = convert_custom_config_dict.get("static", {})
dtypes = get_qconfig_dtypes(qconfig)
if not is_reference and dtypes not in default_op_supported_dtypes[self.op]:
warnings.warn(
"dtype combination: {} is not "
"supported by {} "
"supported dtype combinations are: {}".format(dtypes, self.op, default_op_supported_dtypes[self.op]))
return quantized_graph.node_copy(node, load_arg(quantized=torch.float))
# TODO: make helper functions for (torch.quint8, torch.qint8, None)
if not is_reference:
if dtypes in [(torch.quint8, torch.qint8, None)]:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
if node.op == 'call_module':
module = modules[str(node.target)]
module.activation_post_process = activation_post_process
quantized_module_cls = get_static_quant_module_class(
type(module), additional_static_quant_mapping)
quantized_module = quantized_module_cls.from_float(module)
parent_name, name = _parent_name(node.target)
setattr(modules[parent_name], name, quantized_module)
return quantized_graph.create_node(
'call_module',
node.target,
load_arg(quantized=[0])(node.args),
load_arg(quantized=torch.float)(node.kwargs))
else:
assert node.op == "call_function"
# call_function
scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[operator]
scale = float(scale)
zero_point = int(zero_point)
scale_arg, zero_point_arg = \
create_qparam_nodes(
node.name, scale, zero_point, modules,
quantized_graph, node_name_to_scope)
assert not isinstance(node.target, str), "Expecting node.target for "
"call_function to be a function instead of a string"
quantized_op = get_quantized_operator(node.target)
args = load_arg(quantized=[0])(node.args)
kwargs = {**load_arg(quantized=torch.float)(node.kwargs), "output_scale": scale_arg,
"output_zero_point": zero_point_arg}
if quantized_op in ARGS_TO_SKIP:
args_to_skip = ARGS_TO_SKIP[quantized_op]
for arg in args_to_skip:
if arg in kwargs:
kwargs.pop(arg)
return quantized_graph.create_node(
"call_function", quantized_op, args, kwargs) # type: ignore[arg-type]
else:
assert dtypes in [(torch.float16, torch.float16, None)]
# Generally fp16 kernels don't exist for fp16 ops
warnings.warn(
"Only reference patterns are currently supported for {dtype} dtype with {op} op"
"".format(dtype=dtypes, op=self.op))
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantized_graph.create_node(
"call_method", "to", (op_out, torch.float16), {})
else:
assert is_reference
# We can produce reference for a dtypes including
# (torch.quint8, torch.qint8, torch.qint32, torch.float16)
act_dtype = activation_dtype(qconfig)
if act_dtype == torch.float:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return op_out
else:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
# make sure the input is quantized to act_dtype
load_arg(quantized={0: act_dtype})(node.args)
args = load_arg(quantized=torch.float)(node.args)
kwargs = load_arg(quantized=torch.float)(node.kwargs)
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantize_node(
op_out, activation_post_process,
node, modules, quantized_graph, node_name_to_scope, is_input=False)
@register_quant_pattern(torch.nn.Hardsigmoid, default_affine_fixed_qparams_fake_quant)
@register_quant_pattern(torch.nn.functional.hardsigmoid, default_affine_fixed_qparams_fake_quant)
@register_quant_pattern('hardsigmoid', default_affine_fixed_qparams_fake_quant)
@register_quant_pattern('hardsigmoid_', default_affine_fixed_qparams_fake_quant)
@register_quant_pattern(torch.nn.Sigmoid, default_affine_fixed_qparams_fake_quant)
@register_quant_pattern(torch.sigmoid, default_affine_fixed_qparams_fake_quant)
@register_quant_pattern('sigmoid', default_affine_fixed_qparams_fake_quant)
@register_quant_pattern('sigmoid_', default_affine_fixed_qparams_fake_quant)
@register_quant_pattern(torch.nn.Tanh, default_symmetric_fixed_qparams_fake_quant)
@register_quant_pattern(torch.tanh, default_symmetric_fixed_qparams_fake_quant)
@register_quant_pattern('tanh', default_symmetric_fixed_qparams_fake_quant)
@register_quant_pattern('tanh_', default_symmetric_fixed_qparams_fake_quant)
class FixedQParamsOpQuantizeHandler(QuantizeHandler):
def __init__(self,
node: Node,
modules: Dict[str, torch.nn.Module]):
super().__init__(node, modules)
self.node = node
def should_mark_output_quantized_from_input_quantized_status(
self,
qconfig: QConfigAny
) -> bool:
# FixQParamOps are the same as CopyNode in int8 quantization
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
# some qhandlers override the activations constructor
def get_activation_ctr(self, qconfig, pattern) -> Optional[Callable]:
if activation_dtype(qconfig) == torch.float16:
return qconfig.activation
else:
return get_default_output_activation_post_process_map().get(
pattern, None)
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
if not is_reference:
dtypes = get_qconfig_dtypes(qconfig)
if dtypes == (torch.float16, torch.float16, None):
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantized_graph.create_node(
"call_method", "to", (op_out, torch.float16,), {}
)
else:
return quantized_graph.node_copy(node, load_arg(quantized=None))
else:
act_dtype = activation_dtype(qconfig)
if act_dtype == torch.float:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return op_out
else:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
# make sure the input is quantized to act_dtype
load_arg(quantized={0: act_dtype})(node.args)
args = load_arg(quantized=torch.float)(node.args)
kwargs = load_arg(quantized=torch.float)(node.kwargs)
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantize_node(
op_out, activation_post_process,
node, modules, quantized_graph, node_name_to_scope, is_input=False)
@register_quant_pattern(torch.nn.AdaptiveAvgPool1d)
@register_quant_pattern(torch.nn.AdaptiveAvgPool2d)
@register_quant_pattern(torch.nn.AdaptiveAvgPool3d)
@register_quant_pattern(torch.nn.AvgPool1d)
@register_quant_pattern(torch.nn.AvgPool2d)
@register_quant_pattern(torch.nn.AvgPool3d)
@register_quant_pattern(torch.nn.Dropout)
@register_quant_pattern(torch.nn.Hardtanh)
@register_quant_pattern(torch.nn.MaxPool1d)
@register_quant_pattern(torch.nn.MaxPool2d)
@register_quant_pattern(torch.nn.MaxPool3d)
@register_quant_pattern(torch.nn.ReLU)
@register_quant_pattern(torch.nn.ReLU6)
@register_quant_pattern(torch.adaptive_avg_pool1d)
@register_quant_pattern(torch.nn.functional.adaptive_avg_pool2d)
@register_quant_pattern(torch.nn.functional.adaptive_avg_pool3d)
@register_quant_pattern(torch.nn.functional.dropout)
@register_quant_pattern(torch.nn.functional.hardtanh)
@register_quant_pattern(torch.nn.functional.hardtanh_)
@register_quant_pattern(torch.nn.functional.interpolate)
@register_quant_pattern(torch.nn.functional.max_pool1d)
@register_quant_pattern(torch.nn.functional.max_pool2d)
@register_quant_pattern(torch.nn.functional.max_pool3d)
@register_quant_pattern(torch.nn.functional.relu)
@register_quant_pattern(torch.nn.functional.relu6)
@register_quant_pattern(torch.avg_pool1d)
@register_quant_pattern(torch._C._nn.avg_pool2d)
@register_quant_pattern(torch._C._nn.avg_pool3d)
@register_quant_pattern(torch.clamp)
@register_quant_pattern(torch.flatten)
@register_quant_pattern(torch.max)
@register_quant_pattern(torch.mean)
@register_quant_pattern(torch.min)
@register_quant_pattern(operator.floordiv)
@register_quant_pattern('clamp')
@register_quant_pattern('mean')
@register_quant_pattern('relu')
@register_quant_pattern('relu_')
class CopyNodeQuantizeHandler(QuantizeHandler):
""" Operators that works on both float and quantized input
if input is quantized, the output Tensor shares
the same quantization parameter with input.
These ops will do computation on the input Tensor, e.g. average pool, so we will
insert extra observer/fake_quant for the output of these operators.
TODO: maybe rename this to TensorValueOpQuantizeHandler
"""
def should_mark_output_quantized_from_input_quantized_status(
self,
qconfig: QConfigAny
) -> bool:
return True
def is_general_tensor_value_op(self) -> bool:
return True
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
# always produce reference pattern for relu
is_relu = node.op == "call_function" and node.target == torch.nn.functional.relu
if is_reference or is_relu:
# when activation dtype is torch.float, the node does not require
# observation
# e.g. dynamic quantization or weight_only quantization
act_dtype = activation_dtype(qconfig)
if act_dtype == torch.float:
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return op_out
else:
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
# make sure the input is quantized to act_dtype
load_arg(quantized={0: act_dtype})(node.args)
args = list(load_arg(quantized=torch.float)(node.args))
kwargs = load_arg(quantized=torch.float)(node.kwargs)
op_out = quantized_graph.node_copy(node, load_arg(quantized=torch.float))
return quantize_node(
op_out,
activation_post_process,
node, modules, quantized_graph, node_name_to_scope, is_input=False)
else:
return quantized_graph.node_copy(node, load_arg(quantized=None))
class CustomModuleQuantizeHandler(QuantizeHandler):
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
""" Convert a float custom module to quantized custom module
"""
assert node.op == 'call_module'
assert convert_custom_config_dict is not None
custom_module_class_mapping = convert_custom_config_dict.get("observed_to_quantized_custom_module_class", None)
assert custom_module_class_mapping is not None
observed_custom_module = modules[str(node.target)]
if activation_is_statically_quantized(qconfig):
activation_post_process = \
self._maybe_get_last_node_only_observer(modules)
assert activation_post_process is not None
observed_custom_module.activation_post_process = activation_post_process
quantized_custom_module_class = get_swapped_custom_module_class(
observed_custom_module, custom_module_class_mapping, qconfig)
quantized_custom_module = \
quantized_custom_module_class.from_observed(observed_custom_module)
parent_name, name = _parent_name(node.target)
setattr(modules[parent_name], name, quantized_custom_module)
# hardcoded the quntized input to be None (take whatever is in the environemnt),
# we can extend this
# if there is a need, e.g. get the indexes of quantized inputs from some
# module attribute like module._QUANTIZED_INPUT_INDEXES
return quantized_graph.node_copy(node, load_arg(quantized=None))
@register_quant_pattern(torch.nn.Identity)
@register_quant_pattern(torch.chunk)
@register_quant_pattern(torch.transpose)
@register_quant_pattern(torch.repeat_interleave)
@register_quant_pattern(torch.sort)
@register_quant_pattern(torch.squeeze)
@register_quant_pattern(torch.stack)
@register_quant_pattern(torch.unsqueeze)
@register_quant_pattern(operator.getitem)
@register_quant_pattern('chunk')
@register_quant_pattern('contiguous')
@register_quant_pattern('detach')
@register_quant_pattern('detach_')
@register_quant_pattern('numel')
@register_quant_pattern('permute')
@register_quant_pattern('repeat')
@register_quant_pattern('repeat_interleave')
@register_quant_pattern('reshape')
@register_quant_pattern('resize_')
@register_quant_pattern('shape')
@register_quant_pattern('size')
@register_quant_pattern('squeeze')
@register_quant_pattern('squeeze_')
@register_quant_pattern('transpose')
@register_quant_pattern('unsqueeze')
@register_quant_pattern('unsqueeze_')
@register_quant_pattern('view')
class GeneralTensorShapeOpQuantizeHandler(QuantizeHandler):
""" Operators that works on both float and quantized input
if input is quantized, the output Tensor shares
the same quantization parameter with input.
These ops only do rearrangement of Tensor values, for
example reshape, or just query the information about Tensor
e.g. size, and we do not insert extra observer/fake_quant
for the output of the operator.
"""
def is_general_tensor_shape_op(self) -> bool:
return True
def should_mark_output_quantized_from_input_quantized_status(
self,
qconfig: QConfigAny
) -> bool:
return True
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
return quantized_graph.node_copy(node, load_arg(quantized=None))
class StandaloneModuleQuantizeHandler(QuantizeHandler):
""" Converts an observed standalone module to quantized standalone module
by calling convert_fx on the observed standalone module.
"""
def convert(self,
node: Node,
qconfig: QConfigAny,
modules: Dict[str, torch.nn.Module],
quantized_graph: Graph,
node_name_to_scope: Dict[str, Tuple[str, type]],
load_arg: Callable,
is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> Node:
assert node.op == 'call_module'
convert = torch.quantization.quantize_fx._convert_standalone_module_fx # type: ignore[attr-defined]
# We know that observed standalone module is a GraphModule since
# it's produced by us
observed_standalone_module : GraphModule = modules[str(node.target)] # type: ignore[assignment]
input_quantized_idxs = observed_standalone_module._standalone_module_input_quantized_idxs.tolist() # type: ignore[operator]
quantized_standalone_module = convert(observed_standalone_module, is_reference=is_reference)
parent_name, name = _parent_name(node.target)
# update the modules dict
setattr(modules[parent_name], name, quantized_standalone_module)
modules[str(node.target)] = quantized_standalone_module
return quantized_graph.node_copy(node, load_arg(quantized=input_quantized_idxs))