| #pragma once |
| #include <ATen/ExpandUtils.h> |
| #include <ATen/native/CanUse32BitIndexMath.h> |
| #include <ATen/native/TensorIterator.h> |
| #include <ATen/core/IListRef.h> |
| #include <c10/util/irange.h> |
| |
| namespace at::native { |
| |
| [[noreturn]] |
| static void invalid_mask(const Tensor & self, int64_t idx, const Tensor & mask, int64_t maskIdx) { |
| TORCH_CHECK_INDEX(false, "The shape of the mask ", mask.sizes(), " at index ", maskIdx, |
| " does not match the shape of the indexed tensor ", self.sizes(), " at index ", idx); |
| } |
| |
| |
| static C10_UNUSED std::vector<Tensor> expandTensors(const Tensor & self, IOptTensorListRef indices) { |
| // If indices come in as ByteTensor or BoolTensor (masks), expand them into the equivalent indexing by LongTensors |
| std::vector<Tensor> result; |
| for (const auto& index_opt : indices) { |
| if (!index_opt.has_value()) { |
| result.emplace_back(); |
| } else { |
| const auto& index = *index_opt; |
| if (index.scalar_type() == kByte || index.scalar_type() == kBool) { |
| if (index.scalar_type() == kByte) { |
| TORCH_WARN("indexing with dtype torch.uint8 is now deprecated," \ |
| " please use a dtype torch.bool instead."); |
| } |
| // The sizes of the ByteTensor mask or bool tensor must match the sizes of the |
| // corresponding dimensions in self |
| for (const auto j : c10::irange(index.dim())) { |
| int64_t srcIdx = result.size() + j; |
| if (index.size(j) != self.size(srcIdx)) { |
| invalid_mask(self, srcIdx, index, j); |
| } |
| } |
| // Replace with nonzeros |
| auto nonzero = index.nonzero(); |
| for (const auto j : c10::irange(index.dim())) { |
| result.emplace_back(nonzero.select(1, j)); |
| } |
| } else { |
| result.emplace_back(std::move(index)); |
| } |
| } |
| } |
| return result; |
| } |
| |
| static C10_UNUSED void checkIndexTensorTypes(IOptTensorListRef indices, bool allow_int=false) { |
| for (const auto& tensor : indices) { |
| if (tensor.has_value() && tensor->defined()) { |
| auto scalarType = tensor->scalar_type(); |
| if (allow_int) { |
| if (scalarType != kLong && scalarType != kByte && scalarType != kBool && scalarType != kInt) { |
| TORCH_CHECK_INDEX(false, "tensors used as indices must be long, int, byte or bool tensors"); |
| } |
| } else { |
| if (scalarType != kLong && scalarType != kByte && scalarType != kBool) { |
| TORCH_CHECK_INDEX(false, "tensors used as indices must be long, byte or bool tensors"); |
| } |
| } |
| } |
| } |
| } |
| |
| inline torch::List<c10::optional<Tensor>> toListOfOptionalTensors(ArrayRef<Tensor> list) { |
| torch::List<c10::optional<Tensor>> result; |
| result.reserve(list.size()); |
| for (const Tensor& a : list) { |
| result.push_back(a); |
| } |
| return result; |
| } |
| |
| inline torch::List<c10::optional<Tensor>> toListOfOptionalTensors(ArrayRef<IValue> list) { |
| torch::List<c10::optional<Tensor>> result; |
| result.reserve(list.size()); |
| for (const IValue& a : list) { |
| result.push_back(a.isTensor() ? c10::optional<Tensor>(a.toTensor()) : c10::optional<Tensor>()); |
| } |
| return result; |
| } |
| |
| static C10_UNUSED bool hasContiguousSubspace(TensorList tl) { |
| // true if all the non-null tensors are adjacent |
| auto isDefined = [](const Tensor & tensor){ return tensor.defined(); }; |
| auto isNull = [](const Tensor & tensor){ return !tensor.defined(); }; |
| auto start = std::find_if(tl.begin(), tl.end(), isDefined); |
| auto stop = std::find_if(tl.rbegin(), tl.rend(), isDefined); |
| auto it = std::find_if(start, stop.base(), isNull); |
| return it == stop.base(); |
| } |
| |
| |
| // Transposes the tensor and indices together so that all the non-null indices |
| // index the first k dimensions of the tensor. Returns the transposed tensor |
| // and the reordered indices. For example: |
| // transposeToFront(tensor, {nullptr, a, nullptr, b}) |
| // returns |
| // tensor.permute([1, 3, 0, 2]), {a, b, nullptr, nullptr} |
| static C10_UNUSED std::tuple<Tensor, std::vector<Tensor>> |
| transposeToFront(Tensor self, TensorList indices) { |
| std::vector<int64_t> dims; |
| std::vector<Tensor> transposedIndices; |
| dims.reserve(self.dim()); |
| for (const auto i : c10::irange(self.dim())) { |
| if (indices[i].defined()) { |
| dims.push_back(i); |
| transposedIndices.emplace_back(indices[i]); |
| } |
| } |
| for (const auto i : c10::irange(self.dim())) { |
| if (!indices[i].defined()) { |
| dims.push_back(i); |
| transposedIndices.emplace_back(); |
| } |
| } |
| return std::make_tuple(self.permute(dims), std::move(transposedIndices)); |
| } |
| |
| inline std::tuple<Tensor, std::vector<Tensor>, std::vector<int64_t>> |
| transposeToFrontAndInvPerm(Tensor self, TensorList indices) { |
| std::vector<int64_t> dims; |
| std::vector<int64_t> invPerm; |
| std::vector<Tensor> transposedIndices; |
| dims.reserve(self.dim()); |
| invPerm.resize(self.dim()); |
| for (const auto i : c10::irange(self.dim())) { |
| if (indices[i].defined()) { |
| dims.push_back(i); |
| transposedIndices.emplace_back(indices[i]); |
| } |
| } |
| for (const auto i : c10::irange(self.dim())) { |
| if (!indices[i].defined()) { |
| dims.push_back(i); |
| transposedIndices.emplace_back(); |
| } |
| } |
| for (const auto i : c10::irange(self.dim())) { |
| invPerm[dims[i]] = i; |
| } |
| return std::make_tuple(self.permute(dims), std::move(transposedIndices), std::move(invPerm)); |
| } |
| |
| struct AdvancedIndex { |
| AdvancedIndex(const Tensor& src, TensorList indices); |
| |
| Tensor src; |
| std::vector<Tensor> indices; |
| DimVector indexed_sizes; |
| DimVector indexed_strides; |
| int64_t dims_before; |
| int64_t dims_after; |
| }; |
| |
| |
| } //namespace at::native |