| #pragma once |
| |
| // See NOTE: [Tensor vs. TensorBase] |
| // https://github.com/pytorch/pytorch/pull/66979 |
| #include <ATen/core/TensorBase.h> |
| #include <ATen/native/TensorProperties.h> |
| #include <ATen/native/CanUse32BitIndexMath.h> |
| |
| namespace at::native { |
| |
| namespace detail { |
| |
| enum class GridSamplerInterpolation {Bilinear, Nearest, Bicubic}; |
| enum class GridSamplerPadding {Zeros, Border, Reflection}; |
| |
| } // namespace detail |
| |
| using detail::GridSamplerInterpolation; |
| using detail::GridSamplerPadding; |
| |
| namespace { |
| |
| // See NOTE [ grid_sampler Native Functions ]. |
| void check_grid_sampler_common( |
| const TensorBase& input, |
| const TensorBase& grid |
| ) { |
| auto input_opt = input.options(); |
| auto grid_opt = grid.options(); |
| |
| TORCH_CHECK( |
| input.defined(), |
| "grid_sampler(): expected input to not be undefined"); |
| TORCH_CHECK( |
| grid.defined(), |
| "grid_sampler(): expected grid to not be undefined"); |
| TORCH_CHECK( |
| input_opt.device() == grid_opt.device(), |
| "grid_sampler(): expected input and grid to be on same device, but input " |
| "is on ", input_opt.device(), " and grid is on ", grid_opt.device()); |
| TORCH_CHECK( |
| input_opt.layout() == kStrided && grid_opt.layout() == kStrided, |
| "grid_sampler(): expected input and grid to have torch.strided layout, but " |
| "input has ", input_opt.layout(), " and grid has ", grid_opt.layout()); |
| TORCH_CHECK( |
| input.size(0) == grid.size(0), |
| "grid_sampler(): expected grid and input to have same batch size, but got " |
| "input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes()); |
| TORCH_CHECK( |
| grid.size(-1) == input.dim() - 2, |
| "grid_sampler(): expected grid to have size ", input.dim() - 2, " in last " |
| "dimension, but got grid with sizes ", grid.sizes()); |
| |
| for (const auto i : c10::irange(2, input.dim())) { |
| TORCH_CHECK(input.size(i) > 0, |
| "grid_sampler(): expected input to have non-empty spatial dimensions, " |
| "but input has sizes ", input.sizes(), " with dimension ", i, " being " |
| "empty"); |
| } |
| } |
| |
| // See NOTE [ grid_sampler Native Functions ]. |
| void check_grid_sampler_2d( |
| const TensorBase& input, |
| const TensorBase& grid |
| ) { |
| TORCH_CHECK( |
| input.dim() == 4 && input.dim() == grid.dim(), |
| "grid_sampler(): expected 4D input and grid with same number of " |
| "dimensions, but got input with sizes ", input.sizes(), |
| " and grid with sizes ", grid.sizes()); |
| } |
| |
| // See NOTE [ grid_sampler Native Functions ]. |
| void check_grid_sampler_3d( |
| const TensorBase& input, |
| const TensorBase& grid, |
| int64_t interpolation_mode |
| ) { |
| TORCH_CHECK( |
| input.dim() == 5 && input.dim() == grid.dim(), |
| "grid_sampler(): expected 5D input and grid with same number of " |
| "dimensions, but got input with sizes ", input.sizes(), |
| " and grid with sizes ", grid.sizes()); |
| TORCH_CHECK( |
| !(input.dim() == 5 && |
| static_cast<GridSamplerInterpolation>(interpolation_mode) == |
| GridSamplerInterpolation::Bicubic), |
| "grid_sampler(): bicubic interpolation only supports 4D input"); |
| } |
| |
| // See NOTE [ grid_sampler Native Functions ]. |
| // cudnn does not support inputs larger than 1024. |
| bool cond_cudnn_grid_sampler( |
| const TensorBase& input, |
| const TensorBase& grid |
| ) { |
| return ( |
| at::native::cudnn_is_acceptable(input) && |
| at::native::cudnn_is_acceptable(grid) && |
| at::native::canUse32BitIndexMath(input) && |
| at::native::canUse32BitIndexMath(grid) && |
| input.dim() == 4 && |
| input.sym_size(1) <= 1024); |
| } |
| |
| } // anonymous namespace |
| |
| } // namespace at::native |