| #include <torch/csrc/jit/passes/onnx.h> |
| #include <ATen/core/functional.h> |
| #include <c10/util/Exception.h> |
| #include <torch/csrc/autograd/function.h> |
| #include <torch/csrc/autograd/symbolic.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/python_ir.h> |
| #include <torch/csrc/utils/pybind.h> |
| #include <sstream> |
| #include <unordered_map> |
| |
| namespace torch { |
| namespace jit { |
| |
| void removePrintOps(Block* block) { |
| for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end; |
| ++it) { |
| for (auto b : it->blocks()) { |
| removePrintOps(b); |
| } |
| if (it->kind() == prim::Print || it->kind() == aten::warn) { |
| for (size_t i = 0; i < it->inputs().size();) { |
| auto input = it->inputs().at(i); |
| // only handling constants bc of potential side effects |
| if (input->uses().size() == 1 && |
| input->node()->kind() == prim::Constant) { |
| it->removeInput(i); |
| input->node()->destroy(); |
| } else { |
| ++i; |
| } |
| } |
| it.destroyCurrent(); |
| } |
| } |
| } |
| |
| void RemovePrintOps(std::shared_ptr<Graph>& graph) { |
| removePrintOps(graph->block()); |
| } |
| |
| void checkONNXCompatibility(const c10::FunctionSchema& schema) { |
| // in ONNX, all inputs are tensors, no support for tensor list |
| // so at most one input tensor list is supported |
| bool has_tensor_list = false; |
| const auto& args = schema.arguments(); |
| for (const auto& arg : args) { |
| if (arg.name() == "_caffe2_preallocated_outputs") { |
| continue; |
| } |
| auto type = arg.type(); |
| if (type->kind() == TypeKind::OptionalType) { |
| type = reinterpret_cast<OptionalType*>(type.get())->getElementType(); |
| AT_ASSERT(type->kind() != TypeKind::OptionalType); |
| } |
| if (type->kind() == TypeKind::ListType) { |
| const auto& elem_type = reinterpret_cast<ListType*>(type.get())->getElementType(); |
| if (elem_type->isSubclass(TypeKind::TensorType)) { |
| AT_ASSERTM(!has_tensor_list, "ONNX export supports at most one TensorList as input."); |
| has_tensor_list = true; |
| } |
| } |
| } |
| } |
| |
| void preprocessCaffe2Ops(Block* block) { |
| for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end; |
| ++it) { |
| for (auto b : it->blocks()) { |
| preprocessCaffe2Ops(b); |
| } |
| if (it->kind().is_caffe2()) { |
| const auto& schema = it->schema(); |
| checkONNXCompatibility(schema); |
| std::vector<Value*> origin_inputs; |
| for (Value* v : it->inputs()) { |
| origin_inputs.push_back(v); |
| } |
| it->removeAllInputs(); |
| const auto& args = schema.arguments(); |
| size_t origin_inputs_index = 0; |
| for (const auto& arg : args) { |
| auto type = arg.type(); |
| AT_ASSERT(origin_inputs_index < origin_inputs.size()); |
| const auto& origin_input = origin_inputs[origin_inputs_index++]; |
| if (type->kind() == TypeKind::OptionalType) { |
| type = reinterpret_cast<OptionalType*>(type.get())->getElementType(); |
| if (origin_input->mustBeNone()) { |
| continue; |
| } else { |
| // recursive optional type is not supported |
| AT_ASSERT(type->kind() != TypeKind::OptionalType); |
| } |
| } |
| if (type->isSubclass(TypeKind::TensorType)) { |
| it->addInput(origin_input); |
| } else if (type->kind() == TypeKind::BoolType || type->kind() == TypeKind::IntType) { |
| const auto* constant_node = origin_input->node(); |
| AT_ASSERT(constant_node->kind() == prim::Constant); |
| it->i_(Symbol::attr(arg.name()), constant_node->i(attr::value)); |
| } else if (type->kind() == TypeKind::FloatType) { |
| const auto* constant_node = origin_input->node(); |
| AT_ASSERT(constant_node->kind() == prim::Constant); |
| it->f_(Symbol::attr(arg.name()), constant_node->f(attr::value)); |
| } else if (type->kind() == TypeKind::StringType) { |
| const auto* constant_node = origin_input->node(); |
| AT_ASSERT(constant_node->kind() == prim::Constant); |
| it->s_(Symbol::attr(arg.name()), constant_node->s(attr::value)); |
| } else if (type->kind() == TypeKind::ListType) { |
| const auto& list_node = origin_input->node(); |
| AT_ASSERT(list_node->kind() == prim::ListConstruct); |
| const auto& elem_type = reinterpret_cast<ListType*>(type.get())->getElementType(); |
| if (elem_type->isSubclass(TypeKind::TensorType)) { |
| const auto& tensor_list = origin_input->node()->inputs(); |
| for (const auto& t : tensor_list) { |
| it->addInput(t); |
| } |
| } else if (elem_type->kind() == TypeKind::IntType || elem_type->kind() == TypeKind::BoolType) { |
| // TODO support list of ints and bools, needs c10 op for testing |
| throw std::runtime_error("List[int] and List[bool] are not supported yet."); |
| } else if (elem_type->kind() == TypeKind::FloatType) { |
| std::vector<double> values; |
| for (const auto* elem_input : list_node->inputs()) { |
| const auto* constant_node = elem_input->node(); |
| AT_ASSERT(constant_node->kind() == prim::Constant); |
| values.push_back(constant_node->f(attr::value)); |
| } |
| it->fs_(Symbol::attr(arg.name()), values); |
| } else { |
| throw std::runtime_error("Unhandled scalar arg: " + arg.name() + |
| ", type: " + c10::typeKindToString(elem_type->kind())); } |
| } else { |
| throw std::runtime_error("Unsupported input type of arg " + |
| arg.name() + " in Caffe2 operator: " + |
| c10::typeKindToString(type->kind())); } |
| } |
| } |
| } |
| EliminateDeadCode(block, true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); |
| } |
| |
| void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph) { |
| preprocessCaffe2Ops(graph->block()); |
| } |
| |
| // Transform PythonOps into Nodes that match ONNX semantics. |
| std::shared_ptr<Graph> ToONNX( |
| std::shared_ptr<Graph>& graph, |
| ::torch::onnx::OperatorExportTypes operator_export_type) { |
| auto new_graph = std::make_shared<Graph>(graph->current_scope()); |
| std::unordered_map<Value*, Value*> env; |
| BlockToONNX(graph->block(), new_graph->block(), operator_export_type, env); |
| return new_graph; |
| } |
| |
| void BlockToONNX( |
| Block* old_block, |
| Block* new_block, |
| ::torch::onnx::OperatorExportTypes operator_export_type, |
| std::unordered_map<Value*, Value*> env) { |
| torch::autograd::SymbolicContext ctx{}; |
| ctx.block = new_block; |
| py::object onnx = py::module::import("torch.onnx"); |
| py::object onnx_symbolic = py::module::import("torch.onnx.symbolic_helper"); |
| py::object onnx_registry = py::module::import("torch.onnx.symbolic_registry"); |
| |
| // Returns a node that n maps to in the new graph |
| auto envFn = [&env](Value* n) -> Value* { |
| auto it = env.find(n); |
| TORCH_CHECK(it != env.end(), "Dangling node reference"); |
| TORCH_CHECK(it->second, "Unused node was subsequently used"); |
| return it->second; |
| }; |
| |
| // Initialize context and environment |
| for (auto input : old_block->inputs()) { |
| auto n = ctx.block->addInput()->copyMetadata(input); |
| env[input] = n; |
| } |
| // Put the new outputs in our environment map, and copy the type from the |
| // input graph if they were not set by the symbolic. This is called only |
| // with results of symbolic call (not for nodes that are just cloned). |
| auto setOutputs = [&](const std::string& op_name, |
| Node* node, |
| const value_list& outputs) { |
| auto old_outputs = node->outputs(); |
| // Count all outputs, excluding Handles |
| auto num_old_outputs = old_outputs.size(); |
| if (outputs.size() != num_old_outputs) { |
| std::ostringstream ss; |
| ss << "symbolic for " << op_name |
| << " produced an incorrect number of outputs (expected "; |
| ss << num_old_outputs << ", but got " << outputs.size() << ")"; |
| throw std::runtime_error(ss.str()); |
| } |
| for (size_t i = 0; i < num_old_outputs; ++i) { |
| auto old = old_outputs[i]; |
| if (outputs[i]) { |
| // Allow symbolic() to skip specifying the type of the return node. |
| // Unfortunately, they are on the hook for all internal nodes |
| // (though in practice, the types are not computed.) |
| outputs[i]->setType(old->type()); |
| // Copy over source location and scope information to all nodes |
| // created by the symbolic |
| outputs[i]->node()->setSourceRange(node->sourceRange()); |
| outputs[i]->node()->setScope(node->scope()); |
| env[old] = outputs[i]; |
| } else { |
| // Null output means that the ONNX op doesn't have outputs corresponding |
| // to certain PyTorch outputs |
| env[old] = nullptr; |
| if (!old->uses().empty()) { |
| std::ostringstream ss; |
| ss << "symbolic for " << op_name << " returned None for the output " |
| << i; |
| ss << " (indicating conversion for that particular output is not supported), "; |
| ss << "but the network uses this output later"; |
| // TODO: Say what actually used it |
| throw std::runtime_error(ss.str()); |
| } |
| } |
| } |
| }; |
| |
| // Clone the node and add it to the new graph |
| auto cloneNode = [&](Node* node) { |
| auto n_ = ctx.block->appendNode( |
| ctx.block->owningGraph()->createClone(node, envFn)); |
| for (size_t i = 0; i < node->outputs().size(); i++) { |
| // n_->outputs()[i]->setType(node->outputs()[i]->type()); |
| env[node->outputs()[i]] = n_->outputs()[i]; |
| } |
| }; |
| |
| // Cast output of symbolic() python implementation |
| auto processSymbolicOutput = [&](const std::string& op_name, |
| Node* n, |
| const py::object& raw_output) { |
| if (raw_output.ptr() == Py_None) { |
| cloneNode(n); |
| return; |
| } |
| // Cast the outputs back to C++ and put them in the new graph |
| std::vector<Value*> outputs; |
| try { |
| if (py::isinstance<Value>(raw_output)) { |
| outputs = value_list{py::cast<Value*>(raw_output)}; |
| } else { |
| outputs = py::cast<std::vector<Value*>>(raw_output); |
| } |
| } catch (const std::exception& ex) { |
| std::ostringstream ss; |
| ss << "Error casting results of symbolic for " << op_name |
| << ": expected to return list of op nodes, instead received type ''" |
| << py::str(raw_output.get_type()) << "': " << py::str(raw_output); |
| throw std::runtime_error(ss.str()); |
| } |
| |
| setOutputs(op_name, n, outputs); |
| }; |
| |
| auto callPySymbolicFunction = [&](Node* n) { |
| // The idea is delegate as much of the actual argument massaging to |
| // Python as possible |
| |
| py::tuple py_inputs(n->inputs().size()); |
| Py_ssize_t input_nr = 0; |
| for (auto* input : n->inputs()) { |
| py_inputs[input_nr++] = py::cast(envFn(input)); |
| } |
| |
| WithInsertPoint insert_point_guard(ctx.block); |
| WithCurrentScope scope_guard(*ctx.block->owningGraph(), n->scope()); |
| py::object raw_output = onnx.attr("_run_symbolic_function")( |
| ctx.block->owningGraph(), n, py_inputs, env, operator_export_type); |
| |
| // TODO: Assert it's an ATen identifier??? |
| // (Sometimes it's not...) |
| processSymbolicOutput(n->kind().toUnqualString(), n, raw_output); |
| }; |
| |
| auto callPySymbolicMethod = [&](ConcretePythonOp* op) { |
| // Test if there is a symbolic function; bail if there is not |
| auto pyobj = py::handle(op->pyobj.get()); |
| auto func = op->autogradFunction(); |
| if (func) { |
| pyobj = func->get(); |
| } |
| if (!py::hasattr(pyobj, "symbolic")) { |
| cloneNode(op); |
| return; |
| } |
| |
| // Prepare args for Python. First one is the graph, and is followed |
| // by regular args, with Variables replaced by corresponding nodes. |
| Py_ssize_t input_nr = 0; |
| py::tuple py_symbolic_args(1 + op->cconv.size()); |
| py_symbolic_args[input_nr++] = py::cast(ctx.block->owningGraph()); |
| auto inputs = op->inputs(); |
| auto node_it = inputs.begin(); |
| auto scalar_it = op->scalar_args.begin(); |
| for (auto arg_type : op->cconv) { |
| py::object obj; |
| if (arg_type == 'c') { |
| TORCH_CHECK( |
| scalar_it != op->scalar_args.end(), |
| "expected too many scalar args"); |
| obj = py::reinterpret_borrow<py::object>( |
| py::handle((scalar_it++)->get())); |
| } else if (arg_type == 'd') { |
| TORCH_CHECK(node_it != inputs.end(), "expected too many inputs"); |
| obj = py::cast(envFn(*node_it++)); |
| } else { |
| throw std::runtime_error("unexpected calling convention"); |
| } |
| py_symbolic_args[input_nr++] = obj; |
| } |
| |
| WithInsertPoint insert_point_guard(ctx.block); |
| WithCurrentScope scope_guard(*ctx.block->owningGraph(), op->scope()); |
| // Call the symbolic function |
| // Use a little trampoline function so we can give good error messages |
| // upon argument mismatch |
| py::object opset_version = onnx_symbolic.attr("_export_onnx_opset_version"); |
| onnx_registry.attr("register_op")(op->name(), pyobj.attr("symbolic"), "", opset_version); |
| py::object raw_output = onnx.attr("_run_symbolic_method")( |
| op->name(), pyobj.attr("symbolic"), py_symbolic_args); |
| |
| processSymbolicOutput(op->name(), op, raw_output); |
| }; |
| |
| // Finally, visit all nodes in the graph |
| for (auto node : old_block->nodes()) { |
| if (node->kind().is_caffe2()) { |
| // Pass on Caffe2 opeartor, since we already preprocess it |
| cloneNode(node); |
| } else if (node->kind() == prim::PythonOp) { |
| callPySymbolicMethod(static_cast<ConcretePythonOp*>(node)); |
| } else { |
| callPySymbolicFunction(node); |
| } |
| } |
| for (auto output : old_block->outputs()) { |
| ctx.block->registerOutput(env.at(output)); |
| env.at(output)->setType(output->type()); |
| } |
| EliminateDeadCode(ctx.block, true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); |
| } |
| |
| } // namespace jit |
| } // namespace torch |