blob: b0d797fce7ff78a1aebc462825261f84373ac794 [file] [log] [blame]
#include "caffe2/operators/tile_op.h"
#include <string>
namespace caffe2 {
template <>
bool TileOp<CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<
at::Half,
std::uint8_t,
std::int32_t,
std::int64_t,
float,
double,
std::string>>::call(this, Input(0));
}
template <>
template <>
bool TileOp<CPUContext>::DoRunWithType<std::string>() {
if (InputSize() > 1) {
// We potentially have tiles and/or axis specified as inputs
// as well. We will check for them in that order. In other words:
// InputSize() == 2: tiles is specified
// InputSize() == 3: tiles is specified and axis.
// Anything specified as input will override the arguments
CAFFE_ENFORCE(
Input(1).dim() == 1 && Input(1).numel() == 1,
"Input `tiles` should be a vector of size 1.");
tiles_ = GetArgFromTensor(Input(1));
// Because of a bug in original code, temporarily adds this part to keep
// backward compatibility.
// TODO(yangxm): Remove this part when prod runtime upgraded with fixed
// model config.
if (Input(1).IsType<std::int64_t>()) {
axis_ = 0;
}
if (InputSize() > 2) {
CAFFE_ENFORCE(
Input(2).dim() == 1 && Input(2).numel() == 1,
"Input `axis` should be a vector of size 1.");
axis_ = GetArgFromTensor(Input(2));
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("tiles"),
"Argument `tiles` is missing and was not specified as input.");
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
const auto& X = Input(0);
auto* Y = Output(0);
const int axis = X.canonical_axis_index(axis_);
// reshape output to be input tiled along the axis
std::vector<std::int64_t> Y_dims = X.sizes().vec();
Y_dims[axis] *= tiles_;
Y->Resize(Y_dims);
// size up to (and not including) axis
const int outer_size = X.size_to_dim(axis);
// size from axis up
const int inner_size = X.size_from_dim(axis);
const TypeMeta meta = X.dtype();
const int item_size = X.itemsize();
const char* X_ptr = reinterpret_cast<const char*>(X.raw_data());
char* Y_ptr = reinterpret_cast<char*>(Y->raw_mutable_data(meta));
for (int i = 0; i < outer_size; ++i) {
for (int t = 0; t < tiles_; ++t) {
context_.CopyItemsSameDevice(meta, inner_size, X_ptr, Y_ptr);
Y_ptr += inner_size * item_size;
}
X_ptr += inner_size * item_size;
}
return true;
}
REGISTER_CPU_OPERATOR(Tile, TileOp<CPUContext>);
REGISTER_CPU_OPERATOR(TileGradient, TileGradientOp<CPUContext>);
OPERATOR_SCHEMA(Tile)
.NumInputs(1, 3)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& def,
const std::vector<TensorShape>& in) {
std::vector<TensorShape> out(1);
out[0] = TensorShape(in[0]);
ArgumentHelper helper(def);
const std::int32_t tiles =
helper.GetSingleArgument<std::int32_t>("tiles", 1);
const std::int32_t axis =
helper.GetSingleArgument<std::int32_t>("axis", 0);
if (in.size() > 1) {
// Tile or axis is specified as input; we can't determine
// the size
out[0].set_unknown_shape(true);
} else {
const auto canonical_axis =
canonical_axis_index_(axis, out[0].dims().size());
out[0].set_dims(
canonical_axis, out[0].dims().Get(canonical_axis) * tiles);
}
return out;
})
.SetDoc(R"DOC(
Constructs a tensor by tiling a given tensor along a specified axis. This operation creates a new tensor by replicating the input tensor a number of times specified by the `tiles` argument along the `axis` dimension. The output tensor's `axis` dimension has $(X.dims(axis) * tiles)$ elements.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/tile_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Tile",
["X", "tiles", "axis"],
["Y"]
)
workspace.FeedBlob("X", np.random.randint(10, size=(5,5)))
workspace.FeedBlob("tiles", np.array([5]).astype(np.int32))
workspace.FeedBlob("axis", np.array([1]).astype(np.int32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[9 1 7 1 3]
[2 3 6 2 5]
[0 9 2 6 4]
[5 8 1 5 9]
[2 0 1 3 7]]
Y:
[[9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3 9 1 7 1 3]
[2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5 2 3 6 2 5]
[0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4 0 9 2 6 4]
[5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9 5 8 1 5 9]
[2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7 2 0 1 3 7]]
```
</details>
)DOC")
.Arg("tiles", "(*int*): number of replicas")
.Arg("axis", "(*int*): axis to replicate along")
.Input(0, "X", "(*Tensor*): input tensor")
.Input(
1,
"tiles",
"(*Tensor`<int>`*): [OPTIONAL] number of replicas (overrides `tiles` argument)")
.Input(
2,
"axis",
"(*Tensor`<int>`*): [OPTIONAL] axis to replicate along (overrides `axis` argument)")
.Output(0, "Y", "(*Tensor*): output tensor")
.InheritOnnxSchema();
OPERATOR_SCHEMA(TileGradient).NumInputs(1, 3).NumOutputs(1);
namespace {
class GetTileGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
// Check whether the tiles/axis information was
// passed through input arguments
std::vector<std::string> g_inputs({GO(0)});
if (Def().input_size() > 1) {
g_inputs.push_back(I(1));
}
if (Def().input_size() > 2) {
g_inputs.push_back(I(2));
}
return SingleGradientDef(
"TileGradient", "", g_inputs, std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Tile, GetTileGradient);
} // namespace caffe2