| #include "caffe2/operators/softsign_op.h" |
| |
| #include "caffe2/utils/eigen_utils.h" |
| |
| #include <algorithm> |
| #include <functional> |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool SoftsignFunctor<CPUContext>:: |
| operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { |
| ConstEigenVectorArrayMap<T> X_arr(X, N); |
| EigenVectorMap<T>(Y, N) = (T(1) + X_arr.abs()).inverse() * X_arr; |
| return true; |
| } |
| |
| template <> |
| template <typename T> |
| bool SoftsignGradientFunctor<CPUContext>::Forward( |
| const std::vector<int>& X_dims, |
| const std::vector<int>& /* dY_dims */, |
| const T* X, |
| const T* dY, |
| T* dX, |
| CPUContext* /* context */) const { |
| const int size = std::accumulate( |
| // NOLINTNEXTLINE(modernize-use-transparent-functors) |
| X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); |
| ConstEigenVectorArrayMap<T> dY_arr(dY, size); |
| ConstEigenVectorArrayMap<T> X_arr(X, size); |
| EigenVectorMap<T>(dX, size) = |
| dY_arr * (T(1) + X_arr.abs()).square().inverse(); |
| return true; |
| } |
| |
| REGISTER_CPU_OPERATOR( |
| Softsign, |
| UnaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| SoftsignFunctor<CPUContext>>); |
| REGISTER_CPU_GRADIENT_OPERATOR( |
| SoftsignGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| SoftsignGradientFunctor<CPUContext>>); |
| |
| OPERATOR_SCHEMA(Softsign) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| *Softsign* takes one input data tensor $X$ and produces one output data $Y,$ where the softsign function, $y = \frac{x}{1+ |x|}$, is applied to $X$ elementwise. This operation can be done in an in-place fashion too, by providing the same input and output blobs. |
| |
| Github Links: |
| |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/softsign_op.cc |
| |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "Softsign", |
| ["X"], |
| ["Y"], |
| ) |
| |
| workspace.FeedBlob("X", np.random.randn(3, 3).astype(np.float32)) |
| print("X:\n", workspace.FetchBlob("X"), "\n") |
| |
| workspace.RunOperatorOnce(op) |
| print("Y:\n", workspace.FetchBlob("Y")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| X: |
| [[-1.3060539 0.7242748 -1.9907674 ] |
| [-0.64802396 -0.03244735 0.7455406 ] |
| [-0.298492 -0.5774271 2.8364444 ]] |
| |
| Y: |
| [[-0.5663588 0.420046 -0.6656376 ] |
| [-0.39321268 -0.03142761 0.4271116 ] |
| [-0.2298759 -0.36605626 0.739342 ]] |
| |
| ``` |
| |
| </details> |
| |
| |
| )DOC") |
| .Input(0, "input", "Input data blob to be operated on.") |
| .Output(0, "output", "Output data blob with same shape as input") |
| .InheritOnnxSchema(); |
| |
| GRADIENT_OPERATOR_SCHEMA(SoftsignGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .AllowInplace({{1, 0}}) |
| .SetDoc(R"DOC( |
| Calculates the softsign gradient (sgn(x)/(1+|x|)^2) of the given input tensor |
| element-wise. |
| )DOC") |
| .Input(0, "input", "1-D input tensor") |
| .Input(1, "input", "1-D input tensor") |
| .Output( |
| 0, |
| "output", |
| "The softsign gradient (sgn(x)/(1+|x|)^2) values of the input tensor " |
| "computed element-wise"); |
| |
| namespace { |
| |
| class GetSoftsignGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| std::vector<OperatorDef> GetGradientDefs() override { |
| CAFFE_ENFORCE( |
| I(0) != O(0), |
| "Cannot compute softsign gradient " |
| "if you choose to do an in-place calculation."); |
| |
| return SingleGradientDef( |
| "SoftsignGradient", |
| "", |
| std::vector<std::string>{I(0), GO(0)}, |
| std::vector<std::string>{GI(0)}); |
| } |
| }; |
| |
| } // namespace |
| |
| REGISTER_GRADIENT(Softsign, GetSoftsignGradient); |
| |
| } // namespace caffe2 |