| #include "caffe2/operators/relu_n_op.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <string> |
| |
| #include "caffe2/utils/eigen_utils.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool ReluNFunctor<CPUContext>:: |
| operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { |
| EigenVectorMap<T>(Y, N) = |
| ConstEigenVectorMap<T>(X, N).cwiseMax(T(0)).cwiseMin(T(n)); |
| return true; |
| } |
| |
| template <> |
| template <typename T> |
| bool ReluNGradientFunctor<CPUContext>::Forward( |
| const std::vector<int>& Y_dims, |
| const std::vector<int>& /* dY_dims */, |
| const T* Y, |
| const T* dY, |
| T* dX, |
| CPUContext* /* context */) const { |
| const int size = std::accumulate( |
| // NOLINTNEXTLINE(modernize-use-transparent-functors) |
| Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); |
| ConstEigenVectorArrayMap<T> Y_arr(Y, size); |
| EigenVectorArrayMap<T>(dX, size) = |
| (Y_arr > T(0) && Y_arr < T(n)) |
| .select(ConstEigenVectorArrayMap<T>(dY, size), T(0)); |
| return true; |
| } |
| |
| namespace { |
| |
| OpSchema::Cost CostInferenceForReluN( |
| const OperatorDef& def, |
| const vector<TensorShape>& in) { |
| struct OpSchema::Cost cost = PointwiseCostInference<2>(def, in); |
| cost.params_bytes = 0; |
| return cost; |
| } |
| |
| } // namespace |
| |
| REGISTER_CPU_OPERATOR( |
| ReluN, |
| UnaryElementwiseWithArgsOp< |
| TensorTypes<float>, |
| CPUContext, |
| ReluNFunctor<CPUContext>>); |
| REGISTER_CPU_OPERATOR( |
| ReluNGradient, |
| BinaryElementwiseWithArgsOp< |
| TensorTypes<float>, |
| CPUContext, |
| ReluNGradientFunctor<CPUContext>>); |
| |
| // Input: X, output: Y |
| OPERATOR_SCHEMA(ReluN) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .Arg("n", "the cap of output") |
| .AllowInplace({{0, 0}}) |
| .CostInferenceFunction(CostInferenceForReluN) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Relu takes one input data (Tensor) and produces one output data |
| (Tensor) where the rectified linear function, y = min(max(0, x), n), |
| is applied to the tensor elementwise. |
| )DOC") |
| .Input(0, "X", "1D input tensor") |
| .Output(0, "Y", "1D input tensor"); |
| |
| // Input: Y, dY, output: dX |
| OPERATOR_SCHEMA(ReluNGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .Arg("n", "the cap of forward op output") |
| .AllowInplace({{1, 0}}) |
| .SetDoc(R"DOC( |
| ReluGradient takes both Y and dY and uses this to update dX according to the |
| chain rule and derivatives of the rectified linear function. |
| )DOC"); |
| |
| namespace { |
| |
| class GetReluNGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| std::vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| def_.type() + "Gradient", |
| "", |
| std::vector<std::string>{O(0), GO(0)}, |
| std::vector<std::string>{GI(0)}); |
| } |
| }; |
| |
| } // namespace |
| |
| REGISTER_GRADIENT(ReluN, GetReluNGradient); |
| |
| } // namespace caffe2 |