| #ifndef CAFFE2_OPERATORS_FLATTEN_OP_H_ |
| #define CAFFE2_OPERATORS_FLATTEN_OP_H_ |
| |
| #include "caffe2/core/operator.h" |
| |
| namespace caffe2 { |
| |
| template <class Context> |
| class FlattenOp : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| template <class... Args> |
| explicit FlattenOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...), |
| axis_(this->template GetSingleArgument<int>("axis", 1)) {} |
| |
| bool RunOnDevice() override { |
| auto& input = Input(0); |
| auto* output = Output(0); |
| CAFFE_ENFORCE_GE( |
| input.dim(), axis_, "The rank of the tensor must be >= axis."); |
| output->Resize(input.size_to_dim(axis_), input.size_from_dim(axis_)); |
| context_.CopyItemsSameDevice( |
| input.dtype(), |
| input.numel(), |
| input.raw_data(), |
| output->raw_mutable_data(input.dtype())); |
| return true; |
| } |
| |
| private: |
| int axis_; |
| }; |
| |
| inline std::vector<TensorShape> TensorInferenceForFlatten( |
| const OperatorDef& def, |
| const std::vector<TensorShape>& in) { |
| ArgumentHelper helper(def); |
| const int axis = helper.GetSingleArgument<int>("axis", 1); |
| std::vector<TensorShape> out(1); |
| int64_t outer = 1; |
| int64_t inner = 1; |
| std::size_t index = 0; |
| for (auto d : in[0].dims()) { |
| if (index < axis) { |
| outer *= d; |
| } else { |
| inner *= d; |
| } |
| ++index; |
| } |
| out[0].set_data_type(in[0].data_type()); |
| out[0].add_dims(outer); |
| out[0].add_dims(inner); |
| return out; |
| } |
| |
| } // namespace caffe2 |
| |
| #endif // CAFFE2_OPERATORS_FLATTEN_OP_H_ |