| import torch |
| import torch.nn.quantized as nnq |
| import torch.nn.quantized.dynamic as nnqd |
| import torch.nn.intrinsic.quantized as nnq_fused |
| import torch.nn.quantized.functional as qF |
| from torch.nn.quantized.modules import Conv2d |
| from torch.nn.intrinsic.quantized import ConvReLU2d |
| import torch.quantization |
| from common_utils import run_tests, IS_PPC, TEST_WITH_UBSAN |
| from common_quantization import QuantizationTestCase, prepare_dynamic |
| from common_quantized import _calculate_dynamic_qparams, override_quantized_engine |
| from hypothesis import given |
| from hypothesis import strategies as st |
| from hypothesis_utils import no_deadline |
| import unittest |
| import io |
| |
| ''' |
| Note that tests in this file are just API test, to make sure we wrapped the |
| quantized operator implementations correctly in the user facing APIs, these are |
| not correctness test for the underlying quantized operators. For correctness |
| test please see `caffe2/test/test_quantized.py`. |
| ''' |
| |
| |
| class FunctionalAPITest(QuantizationTestCase): |
| def test_relu_api(self): |
| X = torch.arange(-5, 5, dtype=torch.float) |
| scale = 2.0 |
| zero_point = 1 |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch.quint8) |
| qY = torch.relu(qX) |
| qY_hat = qF.relu(qX) |
| self.assertEqual(qY, qY_hat) |
| |
| @no_deadline |
| @given( |
| use_bias=st.booleans(), |
| per_channel=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm")) |
| ) |
| def test_conv_api(self, use_bias, per_channel, qengine): |
| """Tests the correctness of the conv module. |
| The correctness is defined against the functional implementation. |
| """ |
| |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| per_channel = False |
| with override_quantized_engine(qengine): |
| N, iC, H, W = 10, 10, 10, 3 |
| oC, g, kH, kW = 16, 1, 3, 3 |
| scale, zero_point = 1.0 / 255, 128 |
| stride = (1, 1) |
| i_padding = (0, 0) |
| dilation = (1, 1) |
| |
| X = torch.randn(N, iC, H, W, dtype=torch.float32) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=128, dtype=torch.quint8) |
| |
| w = torch.randn(oC, iC // g, kH, kW, dtype=torch.float32) |
| |
| if per_channel: |
| scale_tensor = torch.ones(oC, dtype=torch.double) |
| zero_point_tensor = torch.zeros(oC, dtype=torch.long) |
| for i in range(len(scale_tensor)): |
| scale_tensor[i] = (i + 1.0) / 255.0 |
| |
| qw = torch.quantize_per_channel(w, scales=scale_tensor, zero_points=zero_point_tensor, axis=0, dtype=torch.qint8) |
| else: |
| qw = torch.quantize_per_tensor(w, scale=scale, zero_point=0, dtype=torch.qint8) |
| |
| b = torch.randn(oC, dtype=torch.float32) if use_bias else None |
| q_filters_ref = torch.ops.quantized.conv_prepack(qw, |
| b, |
| stride, |
| i_padding, |
| dilation, |
| g) |
| |
| |
| ref_result = torch.ops.quantized.conv2d(qX, q_filters_ref, |
| stride, |
| i_padding, dilation, |
| g, scale, zero_point) |
| |
| q_result = torch.nn.quantized.functional.conv2d(qX, |
| qw, |
| bias=b, scale=scale, |
| zero_point=zero_point, |
| stride=stride, padding=i_padding, |
| dilation=dilation, groups=g, |
| dtype=torch.quint8) |
| |
| self.assertEqual(ref_result, q_result) |
| |
| |
| class DynamicModuleAPITest(QuantizationTestCase): |
| @no_deadline |
| @unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines, |
| " Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs" |
| " with instruction set support avx2 or newer.") |
| @given( |
| batch_size=st.integers(1, 5), |
| in_features=st.integers(16, 32), |
| out_features=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_default_observer=st.booleans(), |
| ) |
| def test_linear_api(self, batch_size, in_features, out_features, use_bias, use_default_observer): |
| """test API functionality for nn.quantized.dynamic.Linear""" |
| W = torch.rand(out_features, in_features).float() |
| W_scale, W_zp = _calculate_dynamic_qparams(W, torch.qint8) |
| W_q = torch.quantize_per_tensor(W, W_scale, W_zp, torch.qint8) |
| X = torch.rand(batch_size, in_features).float() |
| B = torch.rand(out_features).float() if use_bias else None |
| qlinear = nnqd.Linear(in_features, out_features) |
| # Run module with default-initialized parameters. |
| # This tests that the constructor is correct. |
| qlinear.set_weight_bias(W_q, B) |
| qlinear(X) |
| |
| # Simple round-trip test to ensure weight()/set_weight() API |
| self.assertEqual(qlinear.weight(), W_q) |
| W_pack = qlinear._packed_params |
| Z_dq = qlinear(X) |
| |
| # Check if the module implementation matches calling the |
| # ops directly |
| Z_ref = torch.ops.quantized.linear_dynamic(X, W_pack) |
| self.assertEqual(Z_ref, Z_dq) |
| |
| # Test serialization of dynamic quantized Linear Module using state_dict |
| model_dict = qlinear.state_dict() |
| self.assertEqual(model_dict['weight'], W_q) |
| if use_bias: |
| self.assertEqual(model_dict['bias'], B) |
| b = io.BytesIO() |
| torch.save(model_dict, b) |
| b.seek(0) |
| loaded_dict = torch.load(b) |
| for key in model_dict: |
| self.assertEqual(model_dict[key], loaded_dict[key]) |
| loaded_qlinear = nnqd.Linear(in_features, out_features) |
| loaded_qlinear.load_state_dict(loaded_dict) |
| |
| linear_unpack = torch.ops.quantized.linear_unpack |
| self.assertEqual(linear_unpack(qlinear._packed_params), |
| linear_unpack(loaded_qlinear._packed_params)) |
| if use_bias: |
| self.assertEqual(qlinear.bias(), loaded_qlinear.bias()) |
| self.assertTrue(dir(qlinear) == dir(loaded_qlinear)) |
| self.assertTrue(hasattr(qlinear, '_packed_params')) |
| self.assertTrue(hasattr(loaded_qlinear, '_packed_params')) |
| self.assertTrue(hasattr(qlinear, '_weight_bias')) |
| self.assertTrue(hasattr(loaded_qlinear, '_weight_bias')) |
| |
| self.assertEqual(qlinear._weight_bias(), loaded_qlinear._weight_bias()) |
| self.assertEqual(qlinear._weight_bias(), torch.ops.quantized.linear_unpack(qlinear._packed_params)) |
| Z_dq2 = qlinear(X) |
| self.assertEqual(Z_dq, Z_dq2) |
| |
| # The below check is meant to ensure that `torch.save` and `torch.load` |
| # serialization works, however it is currently broken by the following: |
| # https://github.com/pytorch/pytorch/issues/24045 |
| # |
| # Instead, we currently check that the proper exception is thrown on save. |
| # <start code> |
| # b = io.BytesIO() |
| # torch.save(qlinear, b) |
| # b.seek(0) |
| # loaded = torch.load(b) |
| # self.assertEqual(qlinear.weight(), loaded.weight()) |
| # self.assertEqual(qlinear.zero_point, loaded.zero_point) |
| # <end code> |
| with self.assertRaisesRegex(RuntimeError, r'torch.save\(\) is not currently supported'): |
| b = io.BytesIO() |
| torch.save(qlinear, b) |
| |
| # Test JIT |
| self.checkScriptable(qlinear, list(zip([X], [Z_ref])), check_save_load=True) |
| |
| # Test from_float |
| float_linear = torch.nn.Linear(in_features, out_features).float() |
| if use_default_observer: |
| float_linear.qconfig = torch.quantization.default_dynamic_qconfig |
| prepare_dynamic(float_linear) |
| float_linear(X.float()) |
| quantized_float_linear = nnqd.Linear.from_float(float_linear) |
| |
| # Smoke test to make sure the module actually runs |
| quantized_float_linear(X) |
| |
| # Smoke test extra_repr |
| self.assertTrue('QuantizedLinear' in str(quantized_float_linear)) |
| |
| |
| class ModuleAPITest(QuantizationTestCase): |
| def test_relu(self): |
| relu_module = nnq.ReLU() |
| relu6_module = nnq.ReLU6() |
| |
| x = torch.arange(-10, 10, dtype=torch.float) |
| y_ref = torch.relu(x) |
| y6_ref = torch.nn.modules.ReLU6()(x) |
| |
| qx = torch.quantize_per_tensor(x, 1.0, 0, dtype=torch.qint32) |
| qy = relu_module(qx) |
| qy6 = relu6_module(qx) |
| |
| self.assertEqual(y_ref, qy.dequantize(), |
| message="ReLU module API failed") |
| self.assertEqual(y6_ref, qy6.dequantize(), |
| message="ReLU6 module API failed") |
| |
| |
| @no_deadline |
| @given( |
| batch_size=st.integers(1, 5), |
| in_features=st.integers(16, 32), |
| out_features=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_fused=st.booleans(), |
| per_channel=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm")) |
| ) |
| def test_linear_api(self, batch_size, in_features, out_features, use_bias, use_fused, per_channel, qengine): |
| """test API functionality for nn.quantized.linear and nn.intrinsic.quantized.linear_relu""" |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| per_channel = False |
| with override_quantized_engine(qengine): |
| W = torch.rand(out_features, in_features).float() |
| if per_channel: |
| scale_tensor = torch.ones(out_features, dtype=torch.double) |
| zero_point_tensor = torch.zeros(out_features, dtype=torch.long) |
| for i in range(len(scale_tensor)): |
| scale_tensor[i] = (i + 1.0) / 255.0 |
| W_q = torch.quantize_per_channel(W, scales=scale_tensor, zero_points=zero_point_tensor, axis=0, dtype=torch.qint8) |
| else: |
| W_q = torch.quantize_per_tensor(W, 0.1, 4, torch.qint8) |
| |
| X = torch.rand(batch_size, in_features).float() |
| X_q = torch.quantize_per_tensor(X, 0.2, 10, torch.quint8) |
| B = torch.rand(out_features).float() if use_bias else None |
| scale = 0.5 |
| zero_point = 3 |
| if use_fused: |
| qlinear = nnq_fused.LinearReLU(in_features, out_features) |
| else: |
| qlinear = nnq.Linear(in_features, out_features) |
| |
| # Run module with default-initialized parameters. |
| # This tests that the constructor is correct. |
| qlinear(X_q) |
| |
| qlinear.set_weight_bias(W_q, B) |
| # Simple round-trip test to ensure weight()/set_weight() API |
| self.assertEqual(qlinear.weight(), W_q) |
| W_pack = qlinear._packed_params |
| |
| qlinear.scale = float(scale) |
| qlinear.zero_point = int(zero_point) |
| Z_q = qlinear(X_q) |
| # Check if the module implementation matches calling the |
| # ops directly |
| if use_fused: |
| Z_ref = torch.ops.quantized.linear_relu(X_q, W_pack, scale, zero_point) |
| |
| self.assertTrue('QuantizedLinearReLU' in str(qlinear)) |
| else: |
| Z_ref = torch.ops.quantized.linear(X_q, W_pack, scale, zero_point) |
| |
| self.assertTrue('QuantizedLinear' in str(qlinear)) |
| self.assertEqual(Z_ref, Z_q) |
| |
| # Test serialization of quantized Linear Module using state_dict |
| |
| model_dict = qlinear.state_dict() |
| self.assertEqual(model_dict['weight'], W_q) |
| if use_bias: |
| self.assertEqual(model_dict['bias'], B) |
| b = io.BytesIO() |
| torch.save(model_dict, b) |
| b.seek(0) |
| loaded_dict = torch.load(b) |
| for key in model_dict: |
| self.assertEqual(model_dict[key], loaded_dict[key]) |
| if use_fused: |
| loaded_qlinear = nnq_fused.LinearReLU(in_features, out_features) |
| else: |
| loaded_qlinear = nnq.Linear(in_features, out_features) |
| loaded_qlinear.load_state_dict(loaded_dict) |
| |
| linear_unpack = torch.ops.quantized.linear_unpack |
| self.assertEqual(linear_unpack(qlinear._packed_params), |
| linear_unpack(loaded_qlinear._packed_params)) |
| if use_bias: |
| self.assertEqual(qlinear.bias(), loaded_qlinear.bias()) |
| self.assertEqual(qlinear.scale, loaded_qlinear.scale) |
| self.assertEqual(qlinear.zero_point, loaded_qlinear.zero_point) |
| self.assertTrue(dir(qlinear) == dir(loaded_qlinear)) |
| self.assertTrue(hasattr(qlinear, '_packed_params')) |
| self.assertTrue(hasattr(loaded_qlinear, '_packed_params')) |
| self.assertTrue(hasattr(qlinear, '_weight_bias')) |
| self.assertTrue(hasattr(loaded_qlinear, '_weight_bias')) |
| self.assertEqual(qlinear._weight_bias(), loaded_qlinear._weight_bias()) |
| self.assertEqual(qlinear._weight_bias(), torch.ops.quantized.linear_unpack(qlinear._packed_params)) |
| Z_q2 = loaded_qlinear(X_q) |
| self.assertEqual(Z_q, Z_q2) |
| |
| # The below check is meant to ensure that `torch.save` and `torch.load` |
| # serialization works, however it is currently broken by the following: |
| # https://github.com/pytorch/pytorch/issues/24045 |
| # |
| # Instead, we currently check that the proper exception is thrown on save. |
| # <start code> |
| # b = io.BytesIO() |
| # torch.save(qlinear, b) |
| # b.seek(0) |
| # loaded = torch.load(b) |
| # self.assertEqual(qlinear.weight(), loaded.weight()) |
| # self.assertEqual(qlinear.scale, loaded.scale) |
| # self.assertEqual(qlinear.zero_point, loaded.zero_point) |
| # <end code> |
| with self.assertRaisesRegex(RuntimeError, r'torch.save\(\) is not currently supported'): |
| b = io.BytesIO() |
| torch.save(qlinear, b) |
| |
| # Test JIT |
| self.checkScriptable(qlinear, list(zip([X_q], [Z_ref])), check_save_load=True) |
| |
| # Test from_float. |
| float_linear = torch.nn.Linear(in_features, out_features).float() |
| float_linear.qconfig = torch.quantization.default_qconfig |
| torch.quantization.prepare(float_linear, inplace=True) |
| float_linear(X.float()) |
| # Sequential allows swapping using "convert". |
| quantized_float_linear = torch.nn.Sequential(float_linear) |
| quantized_float_linear = torch.quantization.convert(quantized_float_linear, inplace=True) |
| |
| # Smoke test to make sure the module actually runs |
| quantized_float_linear(X_q) |
| |
| # Smoke test extra_repr |
| self.assertTrue('QuantizedLinear' in str(quantized_float_linear)) |
| |
| def test_quant_dequant_api(self): |
| r = torch.tensor([[1., -1.], [1., -1.]], dtype=torch.float) |
| scale, zero_point, dtype = 1.0, 2, torch.qint8 |
| # testing Quantize API |
| qr = torch.quantize_per_tensor(r, scale, zero_point, dtype) |
| quant_m = nnq.Quantize(scale, zero_point, dtype) |
| qr2 = quant_m(r) |
| self.assertEqual(qr, qr2) |
| # testing Dequantize API |
| rqr = qr.dequantize() |
| dequant_m = nnq.DeQuantize() |
| rqr2 = dequant_m(qr2) |
| self.assertEqual(rqr, rqr2) |
| |
| @no_deadline |
| @given( |
| use_bias=st.booleans(), |
| use_fused=st.booleans(), |
| per_channel=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm")) |
| ) |
| def test_conv_api(self, use_bias, use_fused, per_channel, qengine): |
| """Tests the correctness of the conv module. |
| The correctness is defined against the functional implementation. |
| """ |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| per_channel = False |
| with override_quantized_engine(qengine): |
| N, iC, H, W = 10, 10, 10, 3 |
| oC, g, kH, kW = 16, 1, 3, 3 |
| scale, zero_point = 1.0 / 255, 128 |
| |
| X = torch.randn(N, iC, H, W, dtype=torch.float32) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=128, dtype=torch.quint8) |
| |
| w = torch.randn(oC, iC // g, kH, kW, dtype=torch.float32) |
| |
| if per_channel: |
| scale_tensor = torch.ones(oC, dtype=torch.double) |
| zero_point_tensor = torch.zeros(oC, dtype=torch.long) |
| for i in range(len(scale_tensor)): |
| scale_tensor[i] = (i + 1.0) / 255.0 |
| |
| qw = torch.quantize_per_channel(w, scales=scale_tensor, zero_points=zero_point_tensor, axis=0, dtype=torch.qint8) |
| else: |
| qw = torch.quantize_per_tensor(w, scale=scale, zero_point=0, dtype=torch.qint8) |
| |
| b = torch.randn(oC, dtype=torch.float32) if use_bias else None |
| |
| if use_fused: |
| conv_under_test = ConvReLU2d(in_channels=iC, |
| out_channels=oC, |
| kernel_size=(kH, kW), |
| stride=1, |
| padding=0, |
| dilation=1, |
| groups=g, |
| bias=use_bias, |
| padding_mode='zeros') |
| else: |
| conv_under_test = Conv2d(in_channels=iC, |
| out_channels=oC, |
| kernel_size=(kH, kW), |
| stride=1, |
| padding=0, |
| dilation=1, |
| groups=g, |
| bias=use_bias, |
| padding_mode='zeros') |
| # Run module with default-initialized parameters. |
| # This tests that the constructor is correct. |
| conv_under_test.set_weight_bias(qw, b) |
| conv_under_test(qX) |
| |
| conv_under_test.scale = scale |
| conv_under_test.zero_point = zero_point |
| |
| # Test members |
| self.assertTrue(hasattr(conv_under_test, '_packed_params')) |
| self.assertTrue(hasattr(conv_under_test, 'scale')) |
| self.assertTrue(hasattr(conv_under_test, 'zero_point')) |
| |
| # Test properties |
| self.assertEqual(qw, conv_under_test.weight()) |
| if use_bias: |
| self.assertEqual(b, conv_under_test.bias()) |
| self.assertEqual(scale, conv_under_test.scale) |
| self.assertEqual(zero_point, conv_under_test.zero_point) |
| |
| # Test forward |
| result_under_test = conv_under_test(qX) |
| result_reference = qF.conv2d(qX, qw, bias=b, |
| scale=scale, zero_point=zero_point, |
| stride=1, padding=0, |
| dilation=1, groups=g, dtype=torch.quint8 |
| ) |
| if use_fused: |
| # result_reference < zero_point doesn't work for qtensor yet |
| # result_reference[result_reference < zero_point] = zero_point |
| MB, OC, OH, OW = result_reference.size() |
| for i in range(MB): |
| for j in range(OC): |
| for h in range(OH): |
| for w in range(OW): |
| if result_reference[i][j][h][w].int_repr() < zero_point: |
| # assign 0. that gets converted to zero_point |
| result_reference[i][j][h][w] = 0. |
| |
| self.assertEqual(result_reference, result_under_test, |
| message="Tensors are not equal.") |
| |
| # Test serialization of quantized Conv Module using state_dict |
| model_dict = conv_under_test.state_dict() |
| self.assertEqual(model_dict['weight'], qw) |
| if use_bias: |
| self.assertEqual(model_dict['bias'], b) |
| b = io.BytesIO() |
| torch.save(model_dict, b) |
| b.seek(0) |
| loaded_dict = torch.load(b) |
| for key in model_dict: |
| self.assertEqual(loaded_dict[key], model_dict[key]) |
| if use_fused: |
| loaded_conv_under_test = ConvReLU2d(in_channels=iC, |
| out_channels=oC, |
| kernel_size=(kH, kW), |
| stride=1, |
| padding=0, |
| dilation=1, |
| groups=g, |
| bias=use_bias, |
| padding_mode='zeros') |
| |
| self.assertTrue('QuantizedConvReLU2d' in str(loaded_conv_under_test)) |
| else: |
| loaded_conv_under_test = Conv2d(in_channels=iC, |
| out_channels=oC, |
| kernel_size=(kH, kW), |
| stride=1, |
| padding=0, |
| dilation=1, |
| groups=g, |
| bias=use_bias, |
| padding_mode='zeros') |
| self.assertTrue('QuantizedConv2d' in str(loaded_conv_under_test)) |
| loaded_conv_under_test.load_state_dict(loaded_dict) |
| self.assertEqual(loaded_conv_under_test._weight_bias(), conv_under_test._weight_bias()) |
| if use_bias: |
| self.assertEqual(loaded_conv_under_test.bias(), conv_under_test.bias()) |
| self.assertEqual(loaded_conv_under_test.scale, conv_under_test.scale) |
| self.assertEqual(loaded_conv_under_test.zero_point, conv_under_test.zero_point) |
| self.assertTrue(dir(loaded_conv_under_test) == dir(conv_under_test)) |
| self.assertTrue(hasattr(conv_under_test, '_packed_params')) |
| self.assertTrue(hasattr(loaded_conv_under_test, '_packed_params')) |
| self.assertTrue(hasattr(conv_under_test, '_weight_bias')) |
| self.assertTrue(hasattr(loaded_conv_under_test, '_weight_bias')) |
| self.assertEqual(loaded_conv_under_test._weight_bias(), conv_under_test._weight_bias()) |
| self.assertEqual(loaded_conv_under_test.weight(), qw) |
| loaded_result = loaded_conv_under_test(qX) |
| self.assertEqual(loaded_result, result_reference) |
| |
| # The below check is meant to ensure that `torch.save` and `torch.load` |
| # serialization works, however it is currently broken by the following: |
| # https://github.com/pytorch/pytorch/issues/24045 |
| # |
| # Instead, we currently check that the proper exception is thrown on save. |
| # <start code> |
| # b = io.BytesIO() |
| # torch.save(conv_under_test, b) |
| # b.seek(0) |
| # loaded_conv = torch.load(b) |
| # |
| # self.assertEqual(conv_under_test.bias(), loaded_conv.bias()) |
| # self.assertEqual(conv_under_test.scale, loaded_conv.scale) |
| # self.assertEqual(conv_under_test.zero_point, loaded_conv.zero_point) |
| # <end code> |
| with self.assertRaisesRegex(RuntimeError, r'torch.save\(\) is not currently supported'): |
| b = io.BytesIO() |
| torch.save(conv_under_test, b) |
| |
| # JIT testing |
| self.checkScriptable(conv_under_test, list(zip([qX], [result_reference])), check_save_load=True) |
| |
| # Test from_float |
| float_conv = torch.nn.Conv2d(in_channels=iC, |
| out_channels=oC, |
| kernel_size=(kH, kW), |
| stride=1, |
| padding=0, |
| dilation=1, |
| groups=g, |
| bias=use_bias, |
| padding_mode='zeros').float() |
| float_conv.qconfig = torch.quantization.default_qconfig |
| torch.quantization.prepare(float_conv, inplace=True) |
| float_conv(X.float()) |
| quantized_float_conv = torch.nn.Sequential(float_conv) |
| torch.quantization.convert(quantized_float_conv, inplace=True) |
| |
| # Smoke test to make sure the module actually runs |
| quantized_float_conv(qX) |
| if use_bias: |
| self.assertEqual(quantized_float_conv[0].bias(), float_conv.bias) |
| # Smoke test extra_repr |
| self.assertTrue('QuantizedConv2d' in str(quantized_float_conv)) |
| |
| def test_pool_api(self): |
| """Tests the correctness of the pool module. |
| The correctness is defined against the functional implementation. |
| """ |
| N, C, H, W = 10, 10, 10, 3 |
| kwargs = { |
| 'kernel_size': 2, |
| 'stride': None, |
| 'padding': 0, |
| 'dilation': 1 |
| } |
| |
| scale, zero_point = 1.0 / 255, 128 |
| |
| X = torch.randn(N, C, H, W, dtype=torch.float32) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| qX_expect = torch.nn.functional.max_pool2d(qX, **kwargs) |
| |
| pool_under_test = torch.nn.quantized.MaxPool2d(**kwargs) |
| qX_hat = pool_under_test(qX) |
| self.assertEqual(qX_expect, qX_hat) |
| |
| # JIT Testing |
| self.checkScriptable(pool_under_test, list(zip([X], [qX_expect]))) |
| |
| if __name__ == '__main__': |
| run_tests() |