| import torch |
| from . import functional as F |
| from .optimizer import Optimizer, required |
| |
| |
| class SGD(Optimizer): |
| r"""Implements stochastic gradient descent (optionally with momentum). |
| |
| Nesterov momentum is based on the formula from |
| `On the importance of initialization and momentum in deep learning`__. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float): learning rate |
| momentum (float, optional): momentum factor (default: 0) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| dampening (float, optional): dampening for momentum (default: 0) |
| nesterov (bool, optional): enables Nesterov momentum (default: False) |
| |
| Example: |
| >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) |
| >>> optimizer.zero_grad() |
| >>> loss_fn(model(input), target).backward() |
| >>> optimizer.step() |
| |
| __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf |
| |
| .. note:: |
| The implementation of SGD with Momentum/Nesterov subtly differs from |
| Sutskever et. al. and implementations in some other frameworks. |
| |
| Considering the specific case of Momentum, the update can be written as |
| |
| .. math:: |
| \begin{aligned} |
| v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ |
| p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, |
| \end{aligned} |
| |
| where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the |
| parameters, gradient, velocity, and momentum respectively. |
| |
| This is in contrast to Sutskever et. al. and |
| other frameworks which employ an update of the form |
| |
| .. math:: |
| \begin{aligned} |
| v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ |
| p_{t+1} & = p_{t} - v_{t+1}. |
| \end{aligned} |
| |
| The Nesterov version is analogously modified. |
| """ |
| |
| def __init__(self, params, lr=required, momentum=0, dampening=0, |
| weight_decay=0, nesterov=False): |
| if lr is not required and lr < 0.0: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if momentum < 0.0: |
| raise ValueError("Invalid momentum value: {}".format(momentum)) |
| if weight_decay < 0.0: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| defaults = dict(lr=lr, momentum=momentum, dampening=dampening, |
| weight_decay=weight_decay, nesterov=nesterov) |
| if nesterov and (momentum <= 0 or dampening != 0): |
| raise ValueError("Nesterov momentum requires a momentum and zero dampening") |
| super(SGD, self).__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super(SGD, self).__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault('nesterov', False) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| d_p_list = [] |
| momentum_buffer_list = [] |
| weight_decay = group['weight_decay'] |
| momentum = group['momentum'] |
| dampening = group['dampening'] |
| nesterov = group['nesterov'] |
| lr = group['lr'] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| d_p_list.append(p.grad) |
| |
| state = self.state[p] |
| if 'momentum_buffer' not in state: |
| momentum_buffer_list.append(None) |
| else: |
| momentum_buffer_list.append(state['momentum_buffer']) |
| |
| F.sgd(params_with_grad, |
| d_p_list, |
| momentum_buffer_list, |
| weight_decay, |
| momentum, |
| lr, |
| dampening, |
| nesterov) |
| |
| # update momentum_buffers in state |
| for p, momentum_buffer in zip(params_with_grad, momentum_buffer_list): |
| state = self.state[p] |
| state['momentum_buffer'] = momentum_buffer |
| |
| return loss |