|  | /** | 
|  | * Copyright (c) 2016-present, Facebook, Inc. | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "caffe2/operators/unique_ops.h" | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | template <> | 
|  | template <typename T> | 
|  | bool UniqueOp<CPUContext>::DoRunWithType() { | 
|  | auto& inputTensor = Input(0); | 
|  | // use dim32 to enforce that it's fine to have remapping of type int | 
|  | int N = inputTensor.dim32(0); | 
|  | CAFFE_ENFORCE_EQ(inputTensor.dim(), 1, "Input should be a vector"); | 
|  |  | 
|  | int* remapping = nullptr; | 
|  | if (REMAPPING < OutputSize()) { | 
|  | auto* remappingTensor = | 
|  | Output(REMAPPING, inputTensor.sizes(), at::dtype<int>()); | 
|  | remapping = remappingTensor->template mutable_data<int>(); | 
|  | } | 
|  |  | 
|  | const T* input = inputTensor.template data<T>(); | 
|  | // TODO(dzhulgakov): if perf becomes an issue consider doing hash table | 
|  | // instead of sorting | 
|  | order_.resize(N); | 
|  | std::iota(order_.begin(), order_.end(), 0); | 
|  | std::sort(order_.begin(), order_.end(), [input](const int x, const int y) { | 
|  | // NOLINTNEXTLINE(clang-analyzer-core.NullDereference) | 
|  | return input[x] < input[y]; | 
|  | }); | 
|  | int K = N; | 
|  | for (int i = 1; i < N; ++i) { | 
|  | K -= input[order_[i]] == input[order_[i - 1]]; | 
|  | } | 
|  | auto* uniqueTensor = Output(UNIQUE, {K}, at::dtype<T>()); | 
|  | T* unique = uniqueTensor->template mutable_data<T>(); | 
|  | K = 0; | 
|  | T prev = -1; | 
|  | for (int i = 0; i < N; ++i) { | 
|  | if (i == 0 || prev != input[order_[i]]) { | 
|  | prev = unique[K++] = input[order_[i]]; | 
|  | } | 
|  | if (remapping) { | 
|  | remapping[order_[i]] = K - 1; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | REGISTER_CPU_OPERATOR(Unique, UniqueOp<CPUContext>); | 
|  |  | 
|  | OPERATOR_SCHEMA(Unique) | 
|  | .NumInputs(1) | 
|  | .NumOutputs(1, 2) | 
|  | .SetDoc(R"DOC( | 
|  | Deduplicates input indices vector and optionally produces reverse remapping. | 
|  | There's no guarantees on the ordering of the output indices. | 
|  | )DOC") | 
|  | .Input(0, "indices", "1D tensor of int32 or int64 indices.") | 
|  | .Output(0, "unique_indices", "1D tensor of deduped entries.") | 
|  | .Output( | 
|  | 1, | 
|  | "remapping", | 
|  | "(optional) mapping from `indices` to `unique_indices`. This has the " | 
|  | "same shape as `indices`. Its elements are the indices into " | 
|  | "`unique_indices` such that `Gather(['unique_indices', 'remapping'])` " | 
|  | "yields `indices`.") | 
|  | .TensorInferenceFunction([](const OperatorDef& def, | 
|  | const vector<TensorShape>& in) { | 
|  | std::vector<TensorShape> out(1); | 
|  | out[0].set_data_type(in[0].data_type()); | 
|  | CAFFE_ENFORCE_EQ(in[0].dims_size(), 1); | 
|  | if (in[0].dims(0) <= 1) { | 
|  | // This special case is useful in some situation, e.g., when feeding | 
|  | // tensor inference with empty tensor (where the first dim is the batch | 
|  | // size) | 
|  | out[0].add_dims(in[0].dims(0)); | 
|  | } else { | 
|  | out[0].set_unknown_shape(true); | 
|  | } | 
|  | if (def.output_size() > 1) { | 
|  | // Remapping has the same shape as the input tensor | 
|  | out.push_back(in[0]); | 
|  | out.back().set_data_type(TensorProto::INT32); | 
|  | } | 
|  | return out; | 
|  | }); | 
|  |  | 
|  | SHOULD_NOT_DO_GRADIENT(Unique); | 
|  |  | 
|  | } // namespace caffe2 |