|  | #ifndef CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_ | 
|  | #define CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_ | 
|  |  | 
|  | #include "caffe2/core/context.h" | 
|  | #include "caffe2/core/operator.h" | 
|  | #include "caffe2/utils/math.h" | 
|  | #include "c10/util/irange.h" | 
|  |  | 
|  | namespace caffe2 { | 
|  |  | 
|  | template <class Context> | 
|  | class ScaleBlobsOp final : public Operator<Context> { | 
|  | public: | 
|  | USE_OPERATOR_CONTEXT_FUNCTIONS; | 
|  | template <class... Args> | 
|  | explicit ScaleBlobsOp(Args&&... args) | 
|  | : Operator<Context>(std::forward<Args>(args)...), | 
|  | OP_SINGLE_ARG(float, "scale", scale_, 1.0f) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool DoRunWithType() { | 
|  | int batchSize = InputSize(); | 
|  |  | 
|  | for (const auto i : c10::irange(batchSize)) { | 
|  | const auto& X = Input(i); | 
|  | auto* Y = Output(i, X.sizes(), at::dtype<T>()); | 
|  | math::Scale<float, T, Context>( | 
|  | X.numel(), | 
|  | scale_, | 
|  | X.template data<T>(), | 
|  | Y->template mutable_data<T>(), | 
|  | &context_); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RunOnDevice() override { | 
|  | for (const auto i : c10::irange(InputSize())) { | 
|  | auto& input = this->template Input<Tensor>(i, CPU); | 
|  | auto* output = this->template Output<Tensor>(i, CPU); | 
|  | output->ResizeLike(input); | 
|  | } | 
|  | return DispatchHelper<TensorTypes<float>>::call(this, Input(0)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const float scale_; | 
|  | Tensor blobSizes_; | 
|  | Tensor inputs_; | 
|  | Tensor outputs_; | 
|  |  | 
|  | Tensor hostBlobSizes_; | 
|  | Tensor hostInputs_; | 
|  | Tensor hostOutputs_; | 
|  | }; | 
|  |  | 
|  | } // namespace caffe2 | 
|  |  | 
|  | #endif // CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_ |