| # mypy: allow-untyped-defs |
| r"""Learning Rate Scheduler.""" |
| import math |
| import types |
| import warnings |
| from bisect import bisect_right |
| from collections import Counter |
| from functools import partial, wraps |
| from typing import ( |
| Any, |
| Callable, |
| cast, |
| Dict, |
| Iterable, |
| List, |
| Literal, |
| Optional, |
| Sequence, |
| SupportsFloat, |
| TypedDict, |
| Union, |
| ) |
| from weakref import ref |
| |
| from torch import inf, Tensor |
| |
| from .optimizer import Optimizer |
| |
| __all__ = [ |
| "LambdaLR", |
| "MultiplicativeLR", |
| "StepLR", |
| "MultiStepLR", |
| "ConstantLR", |
| "LinearLR", |
| "ExponentialLR", |
| "SequentialLR", |
| "CosineAnnealingLR", |
| "ChainedScheduler", |
| "ReduceLROnPlateau", |
| "CyclicLR", |
| "CosineAnnealingWarmRestarts", |
| "OneCycleLR", |
| "PolynomialLR", |
| "LRScheduler", |
| ] |
| |
| EPOCH_DEPRECATION_WARNING = ( |
| "The epoch parameter in `scheduler.step()` was not necessary and is being " |
| "deprecated where possible. Please use `scheduler.step()` to step the " |
| "scheduler. During the deprecation, if epoch is different from None, the " |
| "closed form is used instead of the new chainable form, where available. " |
| "Please open an issue if you are unable to replicate your use case: " |
| "https://github.com/pytorch/pytorch/issues/new/choose." |
| ) |
| |
| |
| def _check_verbose_deprecated_warning(verbose): |
| """Raise a warning when verbose is not the default value.""" |
| if verbose != "deprecated": |
| warnings.warn( |
| "The verbose parameter is deprecated. Please use get_last_lr() " |
| "to access the learning rate.", |
| UserWarning, |
| ) |
| return verbose |
| return False |
| |
| |
| def _format_param(name: str, optimizer: Optimizer, param): |
| """Return correctly formatted lr/momentum for each param group.""" |
| |
| def _copy(_param): |
| return _param.clone() if isinstance(_param, Tensor) else _param |
| |
| if isinstance(param, (list, tuple)): |
| if len(param) != len(optimizer.param_groups): |
| raise ValueError( |
| f"{name} must have the same length as optimizer.param_groups. " |
| f"{name} has {len(param)} values, param_groups has {len(optimizer.param_groups)}." |
| ) |
| else: |
| param = [param] * len(optimizer.param_groups) |
| |
| return list(map(_copy, param)) |
| |
| |
| class LRScheduler: |
| r"""Adjusts the learning rate during optimization.""" |
| |
| _get_lr_called_within_step: bool = False |
| |
| def __init__( |
| self, optimizer: Optimizer, last_epoch=-1, verbose="deprecated" |
| ): # noqa: D107 |
| # Attach optimizer |
| if not isinstance(optimizer, Optimizer): |
| raise TypeError(f"{type(optimizer).__name__} is not an Optimizer") |
| self.optimizer = optimizer |
| |
| # Initialize epoch and base learning rates |
| if last_epoch == -1: |
| for group in optimizer.param_groups: |
| initial_lr = group["lr"] |
| if isinstance(initial_lr, Tensor): |
| initial_lr = initial_lr.clone() |
| group.setdefault("initial_lr", initial_lr) |
| else: |
| for i, group in enumerate(optimizer.param_groups): |
| if "initial_lr" not in group: |
| raise KeyError( |
| "param 'initial_lr' is not specified " |
| f"in param_groups[{i}] when resuming an optimizer" |
| ) |
| self.base_lrs: List[float] = [ |
| group["initial_lr"] for group in optimizer.param_groups |
| ] |
| self.last_epoch = last_epoch |
| |
| # Following https://github.com/pytorch/pytorch/issues/20124 |
| # We would like to ensure that `lr_scheduler.step()` is called after |
| # `optimizer.step()` |
| def patch_track_step_called(opt: Optimizer): |
| if hasattr(opt.step, "_wrapped_by_lr_sched"): |
| # we've already patched |
| return opt.step |
| |
| def wrap_step(step_fn): |
| opt_ref = ref(self.optimizer) |
| func = step_fn.__func__ |
| |
| @wraps(func) |
| def wrapper(*args, **kwargs): |
| opt = opt_ref() |
| opt._opt_called = True # type: ignore[union-attr] |
| return func.__get__(opt, opt.__class__)(*args, **kwargs) |
| |
| wrapper._wrapped_by_lr_sched = True # type: ignore[attr-defined] |
| return wrapper |
| |
| opt.step = wrap_step(opt.step) # type: ignore[method-assign] |
| |
| patch_track_step_called(self.optimizer) |
| self.verbose = _check_verbose_deprecated_warning(verbose) |
| self._initial_step() |
| |
| def _initial_step(self): |
| """Initialize step counts and perform a step.""" |
| self._step_count = 0 |
| self.step() |
| |
| def state_dict(self): |
| """Return the state of the scheduler as a :class:`dict`. |
| |
| It contains an entry for every variable in self.__dict__ which |
| is not the optimizer. |
| """ |
| return { |
| key: value for key, value in self.__dict__.items() if key != "optimizer" |
| } |
| |
| def load_state_dict(self, state_dict: Dict[str, Any]): |
| """Load the scheduler's state. |
| |
| Args: |
| state_dict (dict): scheduler state. Should be an object returned |
| from a call to :meth:`state_dict`. |
| """ |
| self.__dict__.update(state_dict) |
| |
| def get_last_lr(self) -> List[float]: |
| """Return last computed learning rate by current scheduler.""" |
| return self._last_lr |
| |
| def get_lr(self) -> List[float]: |
| """Compute learning rate using chainable form of the scheduler.""" |
| raise NotImplementedError |
| |
| def print_lr( |
| self, |
| is_verbose: bool, |
| group: Dict[str, Any], |
| lr: float, |
| epoch: Optional[int] = None, |
| ): |
| """Display the current learning rate. |
| |
| .. deprecated:: 2.4 |
| ``print_lr()`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| """ |
| warnings.warn( |
| "`LRScheduler.print_lr()` is being deprecated. To fetch the learning rate, " |
| "please use `get_last_lr()` instead. For more details, " |
| "see https://github.com/pytorch/pytorch/issues/99270.", |
| UserWarning, |
| ) |
| if is_verbose: |
| if epoch is None: |
| print(f"Adjusting learning rate of group {group} to {lr:.4e}.") |
| else: |
| epoch_str = ("%.2f" if isinstance(epoch, float) else "%.5d") % epoch |
| print( |
| f"Epoch {epoch_str}: adjusting learning rate of group {group} to {lr:.4e}." |
| ) |
| |
| def step(self, epoch: Optional[int] = None): |
| """Perform a step.""" |
| # Raise a warning if old pattern is detected |
| # https://github.com/pytorch/pytorch/issues/20124 |
| if self._step_count == 1: |
| if not hasattr(self.optimizer.step, "_wrapped_by_lr_sched"): |
| warnings.warn( |
| "Seems like `optimizer.step()` has been overridden after learning rate scheduler " |
| "initialization. Please, make sure to call `optimizer.step()` before " |
| "`lr_scheduler.step()`. See more details at " |
| "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", |
| UserWarning, |
| ) |
| |
| # Just check if there were two first lr_scheduler.step() calls before optimizer.step() |
| elif not getattr(self.optimizer, "_opt_called", False): |
| warnings.warn( |
| "Detected call of `lr_scheduler.step()` before `optimizer.step()`. " |
| "In PyTorch 1.1.0 and later, you should call them in the opposite order: " |
| "`optimizer.step()` before `lr_scheduler.step()`. Failure to do this " |
| "will result in PyTorch skipping the first value of the learning rate schedule. " |
| "See more details at " |
| "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", |
| UserWarning, |
| ) |
| self._step_count += 1 |
| |
| with _enable_get_lr_call(self): |
| if epoch is None: |
| self.last_epoch += 1 |
| values = self.get_lr() |
| else: |
| warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning) |
| self.last_epoch = epoch |
| if hasattr(self, "_get_closed_form_lr"): |
| values = cast(List[float], self._get_closed_form_lr()) |
| else: |
| values = self.get_lr() |
| |
| for i, data in enumerate(zip(self.optimizer.param_groups, values)): |
| param_group, lr = data |
| if isinstance(param_group["lr"], Tensor): |
| lr_val = lr.item() if isinstance(lr, Tensor) else lr # type: ignore[attr-defined] |
| param_group["lr"].fill_(lr_val) |
| else: |
| param_group["lr"] = lr |
| |
| self._last_lr: List[float] = [ |
| group["lr"] for group in self.optimizer.param_groups |
| ] |
| |
| |
| def _warn_get_lr_called_within_step(lr_scheduler: LRScheduler): |
| if not lr_scheduler._get_lr_called_within_step: |
| warnings.warn( |
| "To get the last learning rate computed by the scheduler, " |
| "please use `get_last_lr()`.", |
| UserWarning, |
| stacklevel=2, |
| ) |
| |
| |
| # Including _LRScheduler for backwards compatibility |
| # Subclass instead of assign because we want __name__ of _LRScheduler to be _LRScheduler (assigning would make it LRScheduler). |
| class _LRScheduler(LRScheduler): |
| pass |
| |
| |
| class _enable_get_lr_call: |
| def __init__(self, o: LRScheduler): |
| self.o = o |
| |
| def __enter__(self): |
| self.o._get_lr_called_within_step = True |
| return self |
| |
| def __exit__(self, type, value, traceback): |
| self.o._get_lr_called_within_step = False |
| |
| |
| class LambdaLR(LRScheduler): |
| """Sets the initial learning rate. |
| |
| The learning rate of each parameter group is set to the initial lr |
| times a given function. When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| lr_lambda (function or list): A function which computes a multiplicative |
| factor given an integer parameter epoch, or a list of such |
| functions, one for each group in optimizer.param_groups. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer has two groups. |
| >>> lambda1 = lambda epoch: epoch // 30 |
| >>> lambda2 = lambda epoch: 0.95 ** epoch |
| >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2]) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.optimizer = optimizer |
| |
| self.lr_lambdas: List[Callable[[int], float]] |
| if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple): |
| self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups) |
| else: |
| if len(lr_lambda) != len(optimizer.param_groups): |
| raise ValueError( |
| f"Expected {len(optimizer.param_groups)} lr_lambdas, but got {len(lr_lambda)}" |
| ) |
| self.lr_lambdas = list(lr_lambda) |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def state_dict(self): |
| """Return the state of the scheduler as a :class:`dict`. |
| |
| It contains an entry for every variable in self.__dict__ which |
| is not the optimizer. |
| The learning rate lambda functions will only be saved if they are callable objects |
| and not if they are functions or lambdas. |
| |
| When saving or loading the scheduler, please make sure to also save or load the state of the optimizer. |
| """ |
| state_dict = { |
| key: value |
| for key, value in self.__dict__.items() |
| if key not in ("optimizer", "lr_lambdas") |
| } |
| state_dict["lr_lambdas"] = [None] * len(self.lr_lambdas) |
| |
| for idx, fn in enumerate(self.lr_lambdas): |
| if not isinstance(fn, types.FunctionType): |
| state_dict["lr_lambdas"][idx] = fn.__dict__.copy() |
| |
| return state_dict |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state. |
| |
| When saving or loading the scheduler, please make sure to also save or load the state of the optimizer. |
| |
| Args: |
| state_dict (dict): scheduler state. Should be an object returned |
| from a call to :meth:`state_dict`. |
| """ |
| lr_lambdas = state_dict.pop("lr_lambdas") |
| self.__dict__.update(state_dict) |
| # Restore state_dict keys in order to prevent side effects |
| # https://github.com/pytorch/pytorch/issues/32756 |
| state_dict["lr_lambdas"] = lr_lambdas |
| |
| for idx, fn in enumerate(lr_lambdas): |
| if fn is not None: |
| self.lr_lambdas[idx].__dict__.update(fn) |
| |
| def get_lr(self): |
| """Compute learning rate.""" |
| _warn_get_lr_called_within_step(self) |
| |
| return [ |
| base_lr * lmbda(self.last_epoch) |
| for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs) |
| ] |
| |
| |
| class MultiplicativeLR(LRScheduler): |
| """Multiply the learning rate of each parameter group by the factor given in the specified function. |
| |
| When last_epoch=-1, set initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| lr_lambda (function or list): A function which computes a multiplicative |
| factor given an integer parameter epoch, or a list of such |
| functions, one for each group in optimizer.param_groups. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> lmbda = lambda epoch: 0.95 |
| >>> scheduler = MultiplicativeLR(optimizer, lr_lambda=lmbda) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.optimizer = optimizer |
| |
| self.lr_lambdas: List[Callable[[int], float]] |
| if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple): |
| self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups) |
| else: |
| if len(lr_lambda) != len(optimizer.param_groups): |
| raise ValueError( |
| f"Expected {len(optimizer.param_groups)} lr_lambdas, but got {len(lr_lambda)}" |
| ) |
| self.lr_lambdas = list(lr_lambda) |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def state_dict(self): |
| """Return the state of the scheduler as a :class:`dict`. |
| |
| It contains an entry for every variable in self.__dict__ which |
| is not the optimizer. |
| The learning rate lambda functions will only be saved if they are callable objects |
| and not if they are functions or lambdas. |
| """ |
| state_dict = { |
| key: value |
| for key, value in self.__dict__.items() |
| if key not in ("optimizer", "lr_lambdas") |
| } |
| state_dict["lr_lambdas"] = [None] * len(self.lr_lambdas) |
| |
| for idx, fn in enumerate(self.lr_lambdas): |
| if not isinstance(fn, types.FunctionType): |
| state_dict["lr_lambdas"][idx] = fn.__dict__.copy() |
| |
| return state_dict |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state. |
| |
| Args: |
| state_dict (dict): scheduler state. Should be an object returned |
| from a call to :meth:`state_dict`. |
| """ |
| lr_lambdas = state_dict.pop("lr_lambdas") |
| self.__dict__.update(state_dict) |
| # Restore state_dict keys in order to prevent side effects |
| # https://github.com/pytorch/pytorch/issues/32756 |
| state_dict["lr_lambdas"] = lr_lambdas |
| |
| for idx, fn in enumerate(lr_lambdas): |
| if fn is not None: |
| self.lr_lambdas[idx].__dict__.update(fn) |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch > 0: |
| return [ |
| group["lr"] * lmbda(self.last_epoch) |
| for lmbda, group in zip(self.lr_lambdas, self.optimizer.param_groups) |
| ] |
| else: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| |
| |
| class StepLR(LRScheduler): |
| """Decays the learning rate of each parameter group by gamma every step_size epochs. |
| |
| Notice that such decay can happen simultaneously with other changes to the learning rate |
| from outside this scheduler. When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| step_size (int): Period of learning rate decay. |
| gamma (float): Multiplicative factor of learning rate decay. |
| Default: 0.1. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 0.05 for all groups |
| >>> # lr = 0.05 if epoch < 30 |
| >>> # lr = 0.005 if 30 <= epoch < 60 |
| >>> # lr = 0.0005 if 60 <= epoch < 90 |
| >>> # ... |
| >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| step_size: int, |
| gamma=0.1, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.step_size = step_size |
| self.gamma = gamma |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if (self.last_epoch == 0) or (self.last_epoch % self.step_size != 0): |
| return [group["lr"] for group in self.optimizer.param_groups] |
| return [group["lr"] * self.gamma for group in self.optimizer.param_groups] |
| |
| def _get_closed_form_lr(self): |
| return [ |
| base_lr * self.gamma ** (self.last_epoch // self.step_size) |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class MultiStepLR(LRScheduler): |
| """Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. |
| |
| Notice that such decay can happen simultaneously with other changes to the learning rate |
| from outside this scheduler. When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| milestones (list): List of epoch indices. Must be increasing. |
| gamma (float): Multiplicative factor of learning rate decay. |
| Default: 0.1. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 0.05 for all groups |
| >>> # lr = 0.05 if epoch < 30 |
| >>> # lr = 0.005 if 30 <= epoch < 80 |
| >>> # lr = 0.0005 if epoch >= 80 |
| >>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| milestones: Iterable[int], |
| gamma=0.1, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.milestones = Counter(milestones) |
| self.gamma = gamma |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch not in self.milestones: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| return [ |
| group["lr"] * self.gamma ** self.milestones[self.last_epoch] |
| for group in self.optimizer.param_groups |
| ] |
| |
| def _get_closed_form_lr(self): |
| milestones = sorted(self.milestones.elements()) |
| return [ |
| base_lr * self.gamma ** bisect_right(milestones, self.last_epoch) |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class ConstantLR(LRScheduler): |
| """Multiply the learning rate of each parameter group by a small constant factor. |
| |
| The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters. |
| Notice that such multiplication of the small constant factor can |
| happen simultaneously with other changes to the learning rate from outside this scheduler. |
| When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| factor (float): The number we multiply learning rate until the milestone. Default: 1./3. |
| total_iters (int): The number of steps that the scheduler multiplies the learning rate by the factor. |
| Default: 5. |
| last_epoch (int): The index of the last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 0.05 for all groups |
| >>> # lr = 0.025 if epoch == 0 |
| >>> # lr = 0.025 if epoch == 1 |
| >>> # lr = 0.025 if epoch == 2 |
| >>> # lr = 0.025 if epoch == 3 |
| >>> # lr = 0.05 if epoch >= 4 |
| >>> scheduler = ConstantLR(optimizer, factor=0.5, total_iters=4) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| factor=1.0 / 3, |
| total_iters=5, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| if factor > 1.0 or factor < 0: |
| raise ValueError( |
| "Constant multiplicative factor expected to be between 0 and 1." |
| ) |
| |
| self.factor = factor |
| self.total_iters = total_iters |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch == 0: |
| return [group["lr"] * self.factor for group in self.optimizer.param_groups] |
| |
| if self.last_epoch != self.total_iters: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| |
| return [ |
| group["lr"] * (1.0 / self.factor) for group in self.optimizer.param_groups |
| ] |
| |
| def _get_closed_form_lr(self): |
| return [ |
| base_lr |
| * (self.factor + (self.last_epoch >= self.total_iters) * (1 - self.factor)) |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class LinearLR(LRScheduler): |
| """Decays the learning rate of each parameter group by linearly changing small multiplicative factor. |
| |
| The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters. |
| Notice that such decay can happen simultaneously with other changes to the learning rate |
| from outside this scheduler. When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| start_factor (float): The number we multiply learning rate in the first epoch. |
| The multiplication factor changes towards end_factor in the following epochs. |
| Default: 1./3. |
| end_factor (float): The number we multiply learning rate at the end of linear changing |
| process. Default: 1.0. |
| total_iters (int): The number of iterations that multiplicative factor reaches to 1. |
| Default: 5. |
| last_epoch (int): The index of the last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 0.05 for all groups |
| >>> # lr = 0.025 if epoch == 0 |
| >>> # lr = 0.03125 if epoch == 1 |
| >>> # lr = 0.0375 if epoch == 2 |
| >>> # lr = 0.04375 if epoch == 3 |
| >>> # lr = 0.05 if epoch >= 4 |
| >>> scheduler = LinearLR(optimizer, start_factor=0.5, total_iters=4) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| start_factor=1.0 / 3, |
| end_factor=1.0, |
| total_iters=5, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| if start_factor > 1.0 or start_factor <= 0: |
| raise ValueError( |
| "Starting multiplicative factor expected to be greater than 0 and less or equal to 1." |
| ) |
| |
| if end_factor > 1.0 or end_factor < 0: |
| raise ValueError( |
| "Ending multiplicative factor expected to be between 0 and 1." |
| ) |
| |
| self.start_factor = start_factor |
| self.end_factor = end_factor |
| self.total_iters = total_iters |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch == 0: |
| return [ |
| group["lr"] * self.start_factor for group in self.optimizer.param_groups |
| ] |
| |
| if self.last_epoch > self.total_iters: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| |
| return [ |
| group["lr"] |
| * ( |
| 1.0 |
| + (self.end_factor - self.start_factor) |
| / ( |
| self.total_iters * self.start_factor |
| + (self.last_epoch - 1) * (self.end_factor - self.start_factor) |
| ) |
| ) |
| for group in self.optimizer.param_groups |
| ] |
| |
| def _get_closed_form_lr(self): |
| return [ |
| base_lr |
| * ( |
| self.start_factor |
| + (self.end_factor - self.start_factor) |
| * min(self.total_iters, self.last_epoch) |
| / self.total_iters |
| ) |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class ExponentialLR(LRScheduler): |
| """Decays the learning rate of each parameter group by gamma every epoch. |
| |
| When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| gamma (float): Multiplicative factor of learning rate decay. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| """ |
| |
| def __init__( |
| self, optimizer: Optimizer, gamma: float, last_epoch=-1, verbose="deprecated" |
| ): # noqa: D107 |
| self.gamma = gamma |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch == 0: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| return [group["lr"] * self.gamma for group in self.optimizer.param_groups] |
| |
| def _get_closed_form_lr(self): |
| return [base_lr * self.gamma**self.last_epoch for base_lr in self.base_lrs] |
| |
| |
| class SequentialLR(LRScheduler): |
| """Contains a list of schedulers expected to be called sequentially during the optimization process. |
| |
| Specifically, the schedulers will be called according to the milestone points, which should provide exact |
| intervals by which each scheduler should be called at a given epoch. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| schedulers (list): List of chained schedulers. |
| milestones (list): List of integers that reflects milestone points. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): Does nothing. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 1. for all groups |
| >>> # lr = 0.1 if epoch == 0 |
| >>> # lr = 0.1 if epoch == 1 |
| >>> # lr = 0.9 if epoch == 2 |
| >>> # lr = 0.81 if epoch == 3 |
| >>> # lr = 0.729 if epoch == 4 |
| >>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2) |
| >>> scheduler2 = ExponentialLR(optimizer, gamma=0.9) |
| >>> scheduler = SequentialLR(optimizer, schedulers=[scheduler1, scheduler2], milestones=[2]) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| schedulers: List[LRScheduler], |
| milestones: List[int], |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| if len(schedulers) < 1: |
| raise ValueError( |
| f"{self.__class__.__name__} expects at least one scheduler, but got no scheduler." |
| ) |
| |
| for scheduler_idx, scheduler in enumerate(schedulers): |
| if not hasattr(scheduler, "optimizer"): |
| raise TypeError( |
| f"{self.__class__.__name__} at index {scheduler_idx} should have `optimizer` as its attribute." |
| ) |
| if isinstance(scheduler, ReduceLROnPlateau): |
| raise ValueError( |
| f"{self.__class__.__name__} does not support `ReduceLROnPlateau` scheduler as it " |
| "requires additional kwargs to be specified when calling `step`, " |
| f"but got one at index {scheduler_idx} in the given schedulers sequence." |
| ) |
| if optimizer != scheduler.optimizer: |
| raise ValueError( |
| f"{self.__class__.__name__} expects all schedulers to belong to the same optimizer, but " |
| f"got scheduler {scheduler.__class__.__name__} at index {scheduler_idx} has {scheduler.optimizer}, " |
| f"which is different from {optimizer.__class__.__name__}." |
| ) |
| |
| if len(milestones) != len(schedulers) - 1: |
| raise ValueError( |
| "Sequential Schedulers expects number of schedulers provided to be one more " |
| f"than the number of milestone points, but got number of schedulers {len(schedulers)} and the " |
| f"number of milestones to be equal to {len(milestones)}" |
| ) |
| _check_verbose_deprecated_warning(verbose) |
| self._schedulers = schedulers |
| self._milestones = milestones |
| self.last_epoch = last_epoch + 1 |
| self.optimizer = optimizer |
| |
| # Reset learning rates back to initial values |
| for group in self.optimizer.param_groups: |
| group["lr"] = group["initial_lr"] |
| |
| # "Undo" the step performed by other schedulers |
| for scheduler in self._schedulers: |
| scheduler.last_epoch -= 1 |
| |
| # Perform the initial step for only the first scheduler |
| self._schedulers[0]._initial_step() |
| |
| self._last_lr = schedulers[0].get_last_lr() |
| |
| def step(self): |
| """Perform a step.""" |
| self.last_epoch += 1 |
| idx = bisect_right(self._milestones, self.last_epoch) |
| scheduler = self._schedulers[idx] |
| if idx > 0 and self._milestones[idx - 1] == self.last_epoch: |
| scheduler.step(0) |
| else: |
| scheduler.step() |
| |
| self._last_lr = scheduler.get_last_lr() |
| |
| def state_dict(self): |
| """Return the state of the scheduler as a :class:`dict`. |
| |
| It contains an entry for every variable in self.__dict__ which |
| is not the optimizer. |
| The wrapped scheduler states will also be saved. |
| """ |
| state_dict = { |
| key: value |
| for key, value in self.__dict__.items() |
| if key not in ("optimizer", "_schedulers") |
| } |
| state_dict["_schedulers"] = [None] * len(self._schedulers) |
| |
| for idx, s in enumerate(self._schedulers): |
| state_dict["_schedulers"][idx] = s.state_dict() |
| |
| return state_dict |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state. |
| |
| Args: |
| state_dict (dict): scheduler state. Should be an object returned |
| from a call to :meth:`state_dict`. |
| """ |
| _schedulers = state_dict.pop("_schedulers") |
| self.__dict__.update(state_dict) |
| # Restore state_dict keys in order to prevent side effects |
| # https://github.com/pytorch/pytorch/issues/32756 |
| state_dict["_schedulers"] = _schedulers |
| |
| for idx, s in enumerate(_schedulers): |
| self._schedulers[idx].load_state_dict(s) |
| |
| |
| class PolynomialLR(LRScheduler): |
| """Decays the learning rate of each parameter group using a polynomial function in the given total_iters. |
| |
| When last_epoch=-1, sets initial lr as lr. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| total_iters (int): The number of steps that the scheduler decays the learning rate. Default: 5. |
| power (float): The power of the polynomial. Default: 1.0. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP("undefined vars") |
| >>> # Assuming optimizer uses lr = 0.001 for all groups |
| >>> # lr = 0.001 if epoch == 0 |
| >>> # lr = 0.00075 if epoch == 1 |
| >>> # lr = 0.00050 if epoch == 2 |
| >>> # lr = 0.00025 if epoch == 3 |
| >>> # lr = 0.0 if epoch >= 4 |
| >>> scheduler = PolynomialLR(optimizer, total_iters=4, power=1.0) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| total_iters=5, |
| power=1.0, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.total_iters = total_iters |
| self.power = power |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the learning rate.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch == 0 or self.last_epoch > self.total_iters: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| |
| decay_factor = ( |
| (1.0 - self.last_epoch / self.total_iters) |
| / (1.0 - (self.last_epoch - 1) / self.total_iters) |
| ) ** self.power |
| return [group["lr"] * decay_factor for group in self.optimizer.param_groups] |
| |
| def _get_closed_form_lr(self): |
| return [ |
| ( |
| base_lr |
| * (1.0 - min(self.total_iters, self.last_epoch) / self.total_iters) |
| ** self.power |
| ) |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class CosineAnnealingLR(LRScheduler): |
| r"""Set the learning rate of each parameter group using a cosine annealing schedule. |
| |
| The :math:`\eta_{max}` is set to the initial lr and |
| :math:`T_{cur}` is the number of epochs since the last restart in SGDR: |
| |
| .. math:: |
| \begin{aligned} |
| \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 |
| + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), |
| & T_{cur} \neq (2k+1)T_{max}; \\ |
| \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min}) |
| \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right), |
| & T_{cur} = (2k+1)T_{max}. |
| \end{aligned} |
| |
| When last_epoch=-1, sets initial lr as lr. Notice that because the schedule |
| is defined recursively, the learning rate can be simultaneously modified |
| outside this scheduler by other operators. If the learning rate is set |
| solely by this scheduler, the learning rate at each step becomes: |
| |
| .. math:: |
| \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + |
| \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right) |
| |
| It has been proposed in |
| `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only |
| implements the cosine annealing part of SGDR, and not the restarts. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| T_max (int): Maximum number of iterations. |
| eta_min (float): Minimum learning rate. Default: 0. |
| last_epoch (int): The index of last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: |
| https://arxiv.org/abs/1608.03983 |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| T_max: int, |
| eta_min=0, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| self.T_max = T_max |
| self.eta_min = eta_min |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Retrieve the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| if self.last_epoch == 0: |
| return [group["lr"] for group in self.optimizer.param_groups] |
| elif self._step_count == 1 and self.last_epoch > 0: |
| return [ |
| self.eta_min |
| + (base_lr - self.eta_min) |
| * (1 + math.cos((self.last_epoch) * math.pi / self.T_max)) |
| / 2 |
| for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) |
| ] |
| elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0: |
| return [ |
| group["lr"] |
| + (base_lr - self.eta_min) * (1 - math.cos(math.pi / self.T_max)) / 2 |
| for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) |
| ] |
| return [ |
| (1 + math.cos(math.pi * self.last_epoch / self.T_max)) |
| / (1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) |
| * (group["lr"] - self.eta_min) |
| + self.eta_min |
| for group in self.optimizer.param_groups |
| ] |
| |
| def _get_closed_form_lr(self): |
| return [ |
| self.eta_min |
| + (base_lr - self.eta_min) |
| * (1 + math.cos(math.pi * self.last_epoch / self.T_max)) |
| / 2 |
| for base_lr in self.base_lrs |
| ] |
| |
| |
| class ChainedScheduler(LRScheduler): |
| """Chains a list of learning rate schedulers. |
| |
| Takes in a sequence of chainable learning rate schedulers and calls their |
| step() functions consecutively in just one call to step(). |
| |
| Args: |
| schedulers (sequence): sequence of chained schedulers. |
| optimizer (Optimizer, optional): Wrapped optimizer. Default: None. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> # Assuming optimizer uses lr = 1. for all groups |
| >>> # lr = 0.09 if epoch == 0 |
| >>> # lr = 0.081 if epoch == 1 |
| >>> # lr = 0.729 if epoch == 2 |
| >>> # lr = 0.6561 if epoch == 3 |
| >>> # lr = 0.59049 if epoch >= 4 |
| >>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2) |
| >>> scheduler2 = ExponentialLR(optimizer, gamma=0.9) |
| >>> scheduler = ChainedScheduler([scheduler1, scheduler2], optimizer=optimizer) |
| >>> for epoch in range(100): |
| >>> train(...) |
| >>> validate(...) |
| >>> scheduler.step() |
| """ |
| |
| def __init__( |
| self, schedulers: Sequence[LRScheduler], optimizer: Optional[Optimizer] = None |
| ): # noqa: D107 |
| if len(schedulers) < 1: |
| raise ValueError( |
| f"{self.__class__.__name__} expects at least one scheduler to be chained, but got no scheduler." |
| ) |
| |
| optimizer = optimizer or schedulers[0].optimizer |
| for scheduler_idx, scheduler in enumerate(schedulers): |
| if not hasattr(scheduler, "optimizer"): |
| raise TypeError( |
| f"{self.__class__.__name__} at index {scheduler_idx} should have `optimizer` as its attribute." |
| ) |
| if isinstance(scheduler, ReduceLROnPlateau): |
| raise ValueError( |
| f"{self.__class__.__name__} does not support `ReduceLROnPlateau` scheduler as it " |
| "requires additional kwargs to be specified when calling `step`, " |
| f"but got one at index {scheduler_idx} in the given schedulers sequence." |
| ) |
| if optimizer != scheduler.optimizer: |
| raise ValueError( |
| f"{self.__class__.__name__} expects all schedulers to belong to the same optimizer, but " |
| f"got scheduler {scheduler.__class__.__name__} at index {scheduler_idx} has {scheduler.optimizer}, " |
| f"which is different from {optimizer.__class__.__name__}." |
| ) |
| self._schedulers = schedulers |
| self.optimizer = optimizer |
| self._last_lr = [ |
| group["lr"] for group in self._schedulers[-1].optimizer.param_groups |
| ] |
| |
| def step(self): |
| """Perform a step.""" |
| for scheduler in self._schedulers: |
| scheduler.step() |
| self._last_lr = [ |
| group["lr"] for group in self._schedulers[-1].optimizer.param_groups |
| ] |
| |
| def state_dict(self): |
| """Return the state of the scheduler as a :class:`dict`. |
| |
| It contains an entry for every variable in self.__dict__ which |
| is not the optimizer. |
| The wrapped scheduler states will also be saved. |
| """ |
| state_dict = { |
| key: value |
| for key, value in self.__dict__.items() |
| if key not in ("optimizer", "_schedulers") |
| } |
| state_dict["_schedulers"] = [None] * len(self._schedulers) |
| |
| for idx, s in enumerate(self._schedulers): |
| state_dict["_schedulers"][idx] = s.state_dict() |
| |
| return state_dict |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state. |
| |
| Args: |
| state_dict (dict): scheduler state. Should be an object returned |
| from a call to :meth:`state_dict`. |
| """ |
| _schedulers = state_dict.pop("_schedulers") |
| self.__dict__.update(state_dict) |
| # Restore state_dict keys in order to prevent side effects |
| # https://github.com/pytorch/pytorch/issues/32756 |
| state_dict["_schedulers"] = _schedulers |
| |
| for idx, s in enumerate(_schedulers): |
| self._schedulers[idx].load_state_dict(s) |
| |
| |
| class ReduceLROnPlateau(LRScheduler): |
| """Reduce learning rate when a metric has stopped improving. |
| |
| Models often benefit from reducing the learning rate by a factor |
| of 2-10 once learning stagnates. This scheduler reads a metrics |
| quantity and if no improvement is seen for a 'patience' number |
| of epochs, the learning rate is reduced. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| mode (str): One of `min`, `max`. In `min` mode, lr will |
| be reduced when the quantity monitored has stopped |
| decreasing; in `max` mode it will be reduced when the |
| quantity monitored has stopped increasing. Default: 'min'. |
| factor (float): Factor by which the learning rate will be |
| reduced. new_lr = lr * factor. Default: 0.1. |
| patience (int): The number of allowed epochs with no improvement after |
| which the learning rate will be reduced. |
| For example, consider the case of having no patience (`patience = 0`). |
| In the first epoch, a baseline is established and is always considered good as there's no previous baseline. |
| In the second epoch, if the performance is worse than the baseline, |
| we have what is considered an intolerable epoch. |
| Since the count of intolerable epochs (1) is greater than the patience level (0), |
| the learning rate is reduced at the end of this epoch. |
| From the third epoch onwards, the learning rate continues to be reduced at the end of each epoch |
| if the performance is worse than the baseline. If the performance improves or remains the same, |
| the learning rate is not adjusted. |
| Default: 10. |
| threshold (float): Threshold for measuring the new optimum, |
| to only focus on significant changes. Default: 1e-4. |
| threshold_mode (str): One of `rel`, `abs`. In `rel` mode, |
| dynamic_threshold = best * ( 1 + threshold ) in 'max' |
| mode or best * ( 1 - threshold ) in `min` mode. |
| In `abs` mode, dynamic_threshold = best + threshold in |
| `max` mode or best - threshold in `min` mode. Default: 'rel'. |
| cooldown (int): Number of epochs to wait before resuming |
| normal operation after lr has been reduced. Default: 0. |
| min_lr (float or list): A scalar or a list of scalars. A |
| lower bound on the learning rate of all param groups |
| or each group respectively. Default: 0. |
| eps (float): Minimal decay applied to lr. If the difference |
| between new and old lr is smaller than eps, the update is |
| ignored. Default: 1e-8. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) |
| >>> scheduler = ReduceLROnPlateau(optimizer, 'min') |
| >>> for epoch in range(10): |
| >>> train(...) |
| >>> val_loss = validate(...) |
| >>> # Note that step should be called after validate() |
| >>> scheduler.step(val_loss) |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| mode: Literal["min", "max"] = "min", |
| factor=0.1, |
| patience=10, |
| threshold=1e-4, |
| threshold_mode: Literal["rel", "abs"] = "rel", |
| cooldown=0, |
| min_lr: Union[List[float], float] = 0, |
| eps=1e-8, |
| verbose="deprecated", |
| ): # noqa: D107 |
| if factor >= 1.0: |
| raise ValueError("Factor should be < 1.0.") |
| self.factor = factor |
| |
| # Attach optimizer |
| if not isinstance(optimizer, Optimizer): |
| raise TypeError(f"{type(optimizer).__name__} is not an Optimizer") |
| self.optimizer = optimizer |
| |
| if isinstance(min_lr, (list, tuple)): |
| if len(min_lr) != len(optimizer.param_groups): |
| raise ValueError( |
| f"expected {len(optimizer.param_groups)} min_lrs, got {len(min_lr)}" |
| ) |
| self.min_lrs = list(min_lr) |
| else: |
| self.min_lrs = [min_lr] * len(optimizer.param_groups) |
| |
| self.patience = patience |
| |
| self.verbose = _check_verbose_deprecated_warning(verbose) |
| self.cooldown = cooldown |
| self.cooldown_counter = 0 |
| self.mode = mode |
| self.threshold = threshold |
| self.threshold_mode = threshold_mode |
| self.best: float |
| self.num_bad_epochs: int |
| self.mode_worse: float # the worse value for the chosen mode |
| self.eps = eps |
| self.last_epoch = 0 |
| self._last_lr = [group["lr"] for group in self.optimizer.param_groups] |
| self._init_is_better( |
| mode=mode, threshold=threshold, threshold_mode=threshold_mode |
| ) |
| self._reset() |
| |
| def _reset(self): |
| """Reset num_bad_epochs counter and cooldown counter.""" |
| self.best = self.mode_worse |
| self.cooldown_counter = 0 |
| self.num_bad_epochs = 0 |
| |
| def step(self, metrics: SupportsFloat, epoch=None): # type: ignore[override] |
| """Perform a step.""" |
| # convert `metrics` to float, in case it's a zero-dim Tensor |
| current = float(metrics) |
| if epoch is None: |
| epoch = self.last_epoch + 1 |
| else: |
| warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning) |
| self.last_epoch = epoch |
| |
| if self.is_better(current, self.best): |
| self.best = current |
| self.num_bad_epochs = 0 |
| else: |
| self.num_bad_epochs += 1 |
| |
| if self.in_cooldown: |
| self.cooldown_counter -= 1 |
| self.num_bad_epochs = 0 # ignore any bad epochs in cooldown |
| |
| if self.num_bad_epochs > self.patience: |
| self._reduce_lr(epoch) |
| self.cooldown_counter = self.cooldown |
| self.num_bad_epochs = 0 |
| |
| self._last_lr = [group["lr"] for group in self.optimizer.param_groups] |
| |
| def _reduce_lr(self, epoch): |
| for i, param_group in enumerate(self.optimizer.param_groups): |
| old_lr = float(param_group["lr"]) |
| new_lr = max(old_lr * self.factor, self.min_lrs[i]) |
| if old_lr - new_lr > self.eps: |
| param_group["lr"] = new_lr |
| |
| @property |
| def in_cooldown(self): # noqa: D102 |
| return self.cooldown_counter > 0 |
| |
| def is_better(self, a, best): # noqa: D102 |
| if self.mode == "min" and self.threshold_mode == "rel": |
| rel_epsilon = 1.0 - self.threshold |
| return a < best * rel_epsilon |
| |
| elif self.mode == "min" and self.threshold_mode == "abs": |
| return a < best - self.threshold |
| |
| elif self.mode == "max" and self.threshold_mode == "rel": |
| rel_epsilon = self.threshold + 1.0 |
| return a > best * rel_epsilon |
| |
| else: # mode == 'max' and epsilon_mode == 'abs': |
| return a > best + self.threshold |
| |
| def _init_is_better(self, mode, threshold, threshold_mode): |
| if mode not in {"min", "max"}: |
| raise ValueError("mode " + mode + " is unknown!") |
| if threshold_mode not in {"rel", "abs"}: |
| raise ValueError("threshold mode " + threshold_mode + " is unknown!") |
| |
| if mode == "min": |
| self.mode_worse = inf |
| else: # mode == 'max': |
| self.mode_worse = -inf |
| |
| self.mode = mode |
| self.threshold = threshold |
| self.threshold_mode = threshold_mode |
| |
| def state_dict(self): # noqa: D102 |
| return { |
| key: value for key, value in self.__dict__.items() if key != "optimizer" |
| } |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state.""" |
| self.__dict__.update(state_dict) |
| self._init_is_better( |
| mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode |
| ) |
| |
| |
| class CyclicLR(LRScheduler): |
| r"""Sets the learning rate of each parameter group according to cyclical learning rate policy (CLR). |
| |
| The policy cycles the learning rate between two boundaries with a constant frequency, |
| as detailed in the paper `Cyclical Learning Rates for Training Neural Networks`_. |
| The distance between the two boundaries can be scaled on a per-iteration |
| or per-cycle basis. |
| |
| Cyclical learning rate policy changes the learning rate after every batch. |
| `step` should be called after a batch has been used for training. |
| |
| This class has three built-in policies, as put forth in the paper: |
| |
| * "triangular": A basic triangular cycle without amplitude scaling. |
| * "triangular2": A basic triangular cycle that scales initial amplitude by half each cycle. |
| * "exp_range": A cycle that scales initial amplitude by :math:`\text{gamma}^{\text{cycle iterations}}` |
| at each cycle iteration. |
| |
| This implementation was adapted from the github repo: `bckenstler/CLR`_ |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| base_lr (float or list): Initial learning rate which is the |
| lower boundary in the cycle for each parameter group. |
| max_lr (float or list): Upper learning rate boundaries in the cycle |
| for each parameter group. Functionally, |
| it defines the cycle amplitude (max_lr - base_lr). |
| The lr at any cycle is the sum of base_lr |
| and some scaling of the amplitude; therefore |
| max_lr may not actually be reached depending on |
| scaling function. |
| step_size_up (int): Number of training iterations in the |
| increasing half of a cycle. Default: 2000 |
| step_size_down (int): Number of training iterations in the |
| decreasing half of a cycle. If step_size_down is None, |
| it is set to step_size_up. Default: None |
| mode (str): One of {triangular, triangular2, exp_range}. |
| Values correspond to policies detailed above. |
| If scale_fn is not None, this argument is ignored. |
| Default: 'triangular' |
| gamma (float): Constant in 'exp_range' scaling function: |
| gamma**(cycle iterations) |
| Default: 1.0 |
| scale_fn (function): Custom scaling policy defined by a single |
| argument lambda function, where |
| 0 <= scale_fn(x) <= 1 for all x >= 0. |
| If specified, then 'mode' is ignored. |
| Default: None |
| scale_mode (str): {'cycle', 'iterations'}. |
| Defines whether scale_fn is evaluated on |
| cycle number or cycle iterations (training |
| iterations since start of cycle). |
| Default: 'cycle' |
| cycle_momentum (bool): If ``True``, momentum is cycled inversely |
| to learning rate between 'base_momentum' and 'max_momentum'. |
| Default: True |
| base_momentum (float or list): Lower momentum boundaries in the cycle |
| for each parameter group. Note that momentum is cycled inversely |
| to learning rate; at the peak of a cycle, momentum is |
| 'base_momentum' and learning rate is 'max_lr'. |
| Default: 0.8 |
| max_momentum (float or list): Upper momentum boundaries in the cycle |
| for each parameter group. Functionally, |
| it defines the cycle amplitude (max_momentum - base_momentum). |
| The momentum at any cycle is the difference of max_momentum |
| and some scaling of the amplitude; therefore |
| base_momentum may not actually be reached depending on |
| scaling function. Note that momentum is cycled inversely |
| to learning rate; at the start of a cycle, momentum is 'max_momentum' |
| and learning rate is 'base_lr' |
| Default: 0.9 |
| last_epoch (int): The index of the last batch. This parameter is used when |
| resuming a training job. Since `step()` should be invoked after each |
| batch instead of after each epoch, this number represents the total |
| number of *batches* computed, not the total number of epochs computed. |
| When last_epoch=-1, the schedule is started from the beginning. |
| Default: -1 |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) |
| >>> scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.01, max_lr=0.1) |
| >>> data_loader = torch.utils.data.DataLoader(...) |
| >>> for epoch in range(10): |
| >>> for batch in data_loader: |
| >>> train_batch(...) |
| >>> scheduler.step() |
| |
| |
| .. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186 |
| .. _bckenstler/CLR: https://github.com/bckenstler/CLR |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| base_lr: Union[float, List[float]], |
| max_lr: Union[float, List[float]], |
| step_size_up=2000, |
| step_size_down: Optional[int] = None, |
| mode: Literal["triangular", "triangular2", "exp_range"] = "triangular", |
| gamma=1.0, |
| scale_fn: Optional[Callable[[float], float]] = None, |
| scale_mode: Literal["cycle", "iterations"] = "cycle", |
| cycle_momentum=True, |
| base_momentum=0.8, |
| max_momentum=0.9, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| # Attach optimizer |
| if not isinstance(optimizer, Optimizer): |
| raise TypeError(f"{type(optimizer).__name__} is not an Optimizer") |
| self.optimizer = optimizer |
| |
| base_lrs = _format_param("base_lr", optimizer, base_lr) |
| if last_epoch == -1: |
| for lr, group in zip(base_lrs, optimizer.param_groups): |
| if isinstance(group["lr"], Tensor): |
| lr_val = lr.item() if isinstance(lr, Tensor) else lr |
| group["lr"].fill_(lr_val) |
| else: |
| group["lr"] = lr |
| |
| self.max_lrs = _format_param("max_lr", optimizer, max_lr) |
| |
| step_size_up = float(step_size_up) |
| step_size_down = ( |
| float(step_size_down) if step_size_down is not None else step_size_up |
| ) |
| self.total_size = step_size_up + step_size_down |
| self.step_ratio = step_size_up / self.total_size |
| |
| if mode not in ["triangular", "triangular2", "exp_range"] and scale_fn is None: |
| raise ValueError("mode is invalid and scale_fn is None") |
| |
| self.mode = mode |
| self.gamma = gamma |
| |
| self._scale_fn_ref: Callable[[float], float] |
| self._scale_fn_custom = scale_fn |
| self.scale_mode = scale_mode |
| self._init_scale_fn() |
| |
| self.cycle_momentum = cycle_momentum |
| if cycle_momentum: |
| if ( |
| "momentum" not in optimizer.defaults |
| and "betas" not in optimizer.defaults |
| ): |
| raise ValueError( |
| "optimizer must support momentum or beta1 with `cycle_momentum` option enabled" |
| ) |
| |
| self.use_beta1 = "betas" in self.optimizer.defaults |
| self.base_momentums = _format_param( |
| "base_momentum", optimizer, base_momentum |
| ) |
| self.max_momentums = _format_param("max_momentum", optimizer, max_momentum) |
| if last_epoch == -1: |
| for m_momentum, b_momentum, group in zip( |
| self.max_momentums, self.base_momentums, optimizer.param_groups |
| ): |
| if self.use_beta1: |
| group["betas"] = (m_momentum, *group["betas"][1:]) |
| else: |
| group["momentum"] = m_momentum |
| group["max_momentum"] = m_momentum |
| group["base_momentum"] = b_momentum |
| |
| super().__init__(optimizer, last_epoch, verbose) |
| self.base_lrs = base_lrs |
| |
| def _init_scale_fn(self): |
| if self._scale_fn_custom is not None: |
| return |
| if self.mode == "triangular": |
| self._scale_fn_ref = self._triangular_scale_fn |
| self.scale_mode = "cycle" |
| elif self.mode == "triangular2": |
| self._scale_fn_ref = self._triangular2_scale_fn |
| self.scale_mode = "cycle" |
| elif self.mode == "exp_range": |
| self._scale_fn_ref = partial(self._exp_range_scale_fn, self.gamma) |
| self.scale_mode = "iterations" |
| |
| def scale_fn(self, x) -> float: |
| """Get the scaling policy.""" |
| if self._scale_fn_custom is not None: |
| return self._scale_fn_custom(x) |
| else: |
| return self._scale_fn_ref(x) # static method |
| |
| @staticmethod |
| def _triangular_scale_fn(x: float) -> float: |
| return 1.0 |
| |
| @staticmethod |
| def _triangular2_scale_fn(x: float) -> float: |
| return 1 / (2.0 ** (x - 1)) |
| |
| @staticmethod |
| def _exp_range_scale_fn(gamma: float, x: float) -> float: |
| return gamma**x |
| |
| def get_lr(self): |
| """Calculate the learning rate at batch index. |
| |
| This function treats `self.last_epoch` as the last batch index. |
| |
| If `self.cycle_momentum` is ``True``, this function has a side effect of |
| updating the optimizer's momentum. |
| """ |
| _warn_get_lr_called_within_step(self) |
| |
| cycle = math.floor(1 + self.last_epoch / self.total_size) |
| x = 1.0 + self.last_epoch / self.total_size - cycle |
| if x <= self.step_ratio: |
| scale_factor = x / self.step_ratio |
| else: |
| scale_factor = (x - 1) / (self.step_ratio - 1) |
| |
| lrs = [] |
| for base_lr, max_lr in zip(self.base_lrs, self.max_lrs): |
| base_height = (max_lr - base_lr) * scale_factor |
| if self.scale_mode == "cycle": |
| lr = base_lr + base_height * self.scale_fn(cycle) |
| else: |
| lr = base_lr + base_height * self.scale_fn(self.last_epoch) |
| lrs.append(lr) |
| |
| if self.cycle_momentum: |
| momentums = [] |
| for base_momentum, max_momentum in zip( |
| self.base_momentums, self.max_momentums |
| ): |
| base_height = (max_momentum - base_momentum) * scale_factor |
| if self.scale_mode == "cycle": |
| momentum = max_momentum - base_height * self.scale_fn(cycle) |
| else: |
| momentum = max_momentum - base_height * self.scale_fn( |
| self.last_epoch |
| ) |
| momentums.append(momentum) |
| for param_group, momentum in zip(self.optimizer.param_groups, momentums): |
| if self.use_beta1: |
| param_group["betas"] = (momentum, *param_group["betas"][1:]) |
| else: |
| param_group["momentum"] = momentum |
| |
| return lrs |
| |
| def state_dict(self): # noqa: D102 |
| state = super().state_dict() |
| # We are dropping the `_scale_fn_ref` attribute because it is a |
| # `weakref.WeakMethod` and can't be pickled. |
| state.pop("_scale_fn_ref", None) |
| fn = state.pop("_scale_fn_custom") |
| state["_scale_fn_custom"] = None |
| if fn is not None and not isinstance(fn, types.FunctionType): |
| # The _scale_fn_custom will only be saved if it is a callable object |
| # and not if it is a function or lambda. |
| state["_scale_fn_custom"] = fn.__dict__.copy() |
| |
| return state |
| |
| def load_state_dict(self, state_dict): |
| """Load the scheduler's state.""" |
| fn = state_dict.pop("_scale_fn_custom") |
| super().load_state_dict(state_dict) |
| if fn is not None: |
| self._scale_fn_custom.__dict__.update(fn) |
| self._init_scale_fn() |
| |
| |
| class CosineAnnealingWarmRestarts(LRScheduler): |
| r"""Set the learning rate of each parameter group using a cosine annealing schedule. |
| |
| The :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}` |
| is the number of epochs since the last restart and :math:`T_{i}` is the number |
| of epochs between two warm restarts in SGDR: |
| |
| .. math:: |
| \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + |
| \cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right) |
| |
| When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`. |
| When :math:`T_{cur}=0` after restart, set :math:`\eta_t=\eta_{max}`. |
| |
| It has been proposed in |
| `SGDR: Stochastic Gradient Descent with Warm Restarts`_. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| T_0 (int): Number of iterations until the first restart. |
| T_mult (int, optional): A factor by which :math:`T_{i}` increases after a restart. Default: 1. |
| eta_min (float, optional): Minimum learning rate. Default: 0. |
| last_epoch (int, optional): The index of the last epoch. Default: -1. |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: |
| https://arxiv.org/abs/1608.03983 |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| T_0: int, |
| T_mult=1, |
| eta_min=0, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| if T_0 <= 0 or not isinstance(T_0, int): |
| raise ValueError(f"Expected positive integer T_0, but got {T_0}") |
| if T_mult < 1 or not isinstance(T_mult, int): |
| raise ValueError(f"Expected integer T_mult >= 1, but got {T_mult}") |
| if not isinstance(eta_min, (float, int)): |
| raise ValueError( |
| f"Expected float or int eta_min, but got {eta_min} of type {type(eta_min)}" |
| ) |
| self.T_0 = T_0 |
| self.T_i = T_0 |
| self.T_mult = T_mult |
| self.eta_min = eta_min |
| self.T_cur = last_epoch |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def get_lr(self): |
| """Compute the initial learning rate.""" |
| _warn_get_lr_called_within_step(self) |
| |
| return [ |
| self.eta_min |
| + (base_lr - self.eta_min) |
| * (1 + math.cos(math.pi * self.T_cur / self.T_i)) |
| / 2 |
| for base_lr in self.base_lrs |
| ] |
| |
| def step(self, epoch=None): |
| """Step could be called after every batch update. |
| |
| Example: |
| >>> # xdoctest: +SKIP("Undefined vars") |
| >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) |
| >>> iters = len(dataloader) |
| >>> for epoch in range(20): |
| >>> for i, sample in enumerate(dataloader): |
| >>> inputs, labels = sample['inputs'], sample['labels'] |
| >>> optimizer.zero_grad() |
| >>> outputs = net(inputs) |
| >>> loss = criterion(outputs, labels) |
| >>> loss.backward() |
| >>> optimizer.step() |
| >>> scheduler.step(epoch + i / iters) |
| |
| This function can be called in an interleaved way. |
| |
| Example: |
| >>> # xdoctest: +SKIP("Undefined vars") |
| >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) |
| >>> for epoch in range(20): |
| >>> scheduler.step() |
| >>> scheduler.step(26) |
| >>> scheduler.step() # scheduler.step(27), instead of scheduler(20) |
| """ |
| if epoch is None and self.last_epoch < 0: |
| epoch = 0 |
| |
| if epoch is None: |
| epoch = self.last_epoch + 1 |
| self.T_cur = self.T_cur + 1 |
| if self.T_cur >= self.T_i: |
| self.T_cur = self.T_cur - self.T_i |
| self.T_i = self.T_i * self.T_mult |
| else: |
| if epoch < 0: |
| raise ValueError(f"Expected non-negative epoch, but got {epoch}") |
| if epoch >= self.T_0: |
| if self.T_mult == 1: |
| self.T_cur = epoch % self.T_0 |
| else: |
| n = int( |
| math.log( |
| (epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult |
| ) |
| ) |
| self.T_cur = epoch - self.T_0 * (self.T_mult**n - 1) / ( |
| self.T_mult - 1 |
| ) |
| self.T_i = self.T_0 * self.T_mult ** (n) |
| else: |
| self.T_i = self.T_0 |
| self.T_cur = epoch |
| self.last_epoch = math.floor(epoch) |
| |
| with _enable_get_lr_call(self): |
| for i, data in enumerate(zip(self.optimizer.param_groups, self.get_lr())): |
| param_group, lr = data |
| param_group["lr"] = lr |
| |
| self._last_lr = [group["lr"] for group in self.optimizer.param_groups] |
| |
| |
| class _SchedulePhase(TypedDict): |
| end_step: float |
| start_lr: str |
| end_lr: str |
| start_momentum: str |
| end_momentum: str |
| |
| |
| class OneCycleLR(LRScheduler): |
| r"""Sets the learning rate of each parameter group according to the 1cycle learning rate policy. |
| |
| The 1cycle policy anneals the learning rate from an initial learning rate to some maximum |
| learning rate and then from that maximum learning rate to some minimum learning rate much |
| lower than the initial learning rate. |
| This policy was initially described in the paper `Super-Convergence: |
| Very Fast Training of Neural Networks Using Large Learning Rates`_. |
| |
| The 1cycle learning rate policy changes the learning rate after every batch. |
| `step` should be called after a batch has been used for training. |
| |
| This scheduler is not chainable. |
| |
| Note also that the total number of steps in the cycle can be determined in one |
| of two ways (listed in order of precedence): |
| |
| #. A value for total_steps is explicitly provided. |
| #. A number of epochs (epochs) and a number of steps per epoch |
| (steps_per_epoch) are provided. |
| In this case, the number of total steps is inferred by |
| total_steps = epochs * steps_per_epoch |
| |
| You must either provide a value for total_steps or provide a value for both |
| epochs and steps_per_epoch. |
| |
| The default behaviour of this scheduler follows the fastai implementation of 1cycle, which |
| claims that "unpublished work has shown even better results by using only two phases". To |
| mimic the behaviour of the original paper instead, set ``three_phase=True``. |
| |
| Args: |
| optimizer (Optimizer): Wrapped optimizer. |
| max_lr (float or list): Upper learning rate boundaries in the cycle |
| for each parameter group. |
| total_steps (int): The total number of steps in the cycle. Note that |
| if a value is not provided here, then it must be inferred by providing |
| a value for epochs and steps_per_epoch. |
| Default: None |
| epochs (int): The number of epochs to train for. This is used along |
| with steps_per_epoch in order to infer the total number of steps in the cycle |
| if a value for total_steps is not provided. |
| Default: None |
| steps_per_epoch (int): The number of steps per epoch to train for. This is |
| used along with epochs in order to infer the total number of steps in the |
| cycle if a value for total_steps is not provided. |
| Default: None |
| pct_start (float): The percentage of the cycle (in number of steps) spent |
| increasing the learning rate. |
| Default: 0.3 |
| anneal_strategy (str): {'cos', 'linear'} |
| Specifies the annealing strategy: "cos" for cosine annealing, "linear" for |
| linear annealing. |
| Default: 'cos' |
| cycle_momentum (bool): If ``True``, momentum is cycled inversely |
| to learning rate between 'base_momentum' and 'max_momentum'. |
| Default: True |
| base_momentum (float or list): Lower momentum boundaries in the cycle |
| for each parameter group. Note that momentum is cycled inversely |
| to learning rate; at the peak of a cycle, momentum is |
| 'base_momentum' and learning rate is 'max_lr'. |
| Default: 0.85 |
| max_momentum (float or list): Upper momentum boundaries in the cycle |
| for each parameter group. Functionally, |
| it defines the cycle amplitude (max_momentum - base_momentum). |
| Note that momentum is cycled inversely |
| to learning rate; at the start of a cycle, momentum is 'max_momentum' |
| and learning rate is 'base_lr' |
| Default: 0.95 |
| div_factor (float): Determines the initial learning rate via |
| initial_lr = max_lr/div_factor |
| Default: 25 |
| final_div_factor (float): Determines the minimum learning rate via |
| min_lr = initial_lr/final_div_factor |
| Default: 1e4 |
| three_phase (bool): If ``True``, use a third phase of the schedule to annihilate the |
| learning rate according to 'final_div_factor' instead of modifying the second |
| phase (the first two phases will be symmetrical about the step indicated by |
| 'pct_start'). |
| last_epoch (int): The index of the last batch. This parameter is used when |
| resuming a training job. Since `step()` should be invoked after each |
| batch instead of after each epoch, this number represents the total |
| number of *batches* computed, not the total number of epochs computed. |
| When last_epoch=-1, the schedule is started from the beginning. |
| Default: -1 |
| verbose (bool | str): If ``True``, prints a message to stdout for |
| each update. Default: ``False``. |
| |
| .. deprecated:: 2.2 |
| ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the |
| learning rate. |
| |
| Example: |
| >>> # xdoctest: +SKIP |
| >>> data_loader = torch.utils.data.DataLoader(...) |
| >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) |
| >>> scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=len(data_loader), epochs=10) |
| >>> for epoch in range(10): |
| >>> for batch in data_loader: |
| >>> train_batch(...) |
| >>> optimizer.step() |
| >>> scheduler.step() |
| |
| |
| .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: |
| https://arxiv.org/abs/1708.07120 |
| """ |
| |
| def __init__( |
| self, |
| optimizer: Optimizer, |
| max_lr: Union[float, List[float]], |
| total_steps: Optional[int] = None, |
| epochs: Optional[int] = None, |
| steps_per_epoch: Optional[int] = None, |
| pct_start=0.3, |
| anneal_strategy: Literal["cos", "linear"] = "cos", |
| cycle_momentum=True, |
| base_momentum: Union[float, List[float]] = 0.85, |
| max_momentum: Union[float, List[float]] = 0.95, |
| div_factor=25.0, |
| final_div_factor=1e4, |
| three_phase=False, |
| last_epoch=-1, |
| verbose="deprecated", |
| ): # noqa: D107 |
| # Validate optimizer |
| if not isinstance(optimizer, Optimizer): |
| raise TypeError(f"{type(optimizer).__name__} is not an Optimizer") |
| self.optimizer = optimizer |
| |
| # Validate total_steps |
| if total_steps is not None: |
| if total_steps <= 0 or not isinstance(total_steps, int): |
| raise ValueError( |
| f"Expected positive integer total_steps, but got {total_steps}" |
| ) |
| self.total_steps = total_steps |
| elif epochs is not None and steps_per_epoch is not None: |
| if not isinstance(epochs, int) or epochs <= 0: |
| raise ValueError(f"Expected positive integer epochs, but got {epochs}") |
| if not isinstance(steps_per_epoch, int) or steps_per_epoch <= 0: |
| raise ValueError( |
| f"Expected positive integer steps_per_epoch, but got {steps_per_epoch}" |
| ) |
| self.total_steps = epochs * steps_per_epoch |
| else: |
| raise ValueError( |
| "You must define either total_steps OR (epochs AND steps_per_epoch)" |
| ) |
| |
| self._schedule_phases: List[_SchedulePhase] |
| if three_phase: |
| self._schedule_phases = [ |
| { |
| "end_step": float(pct_start * self.total_steps) - 1, |
| "start_lr": "initial_lr", |
| "end_lr": "max_lr", |
| "start_momentum": "max_momentum", |
| "end_momentum": "base_momentum", |
| }, |
| { |
| "end_step": float(2 * pct_start * self.total_steps) - 2, |
| "start_lr": "max_lr", |
| "end_lr": "initial_lr", |
| "start_momentum": "base_momentum", |
| "end_momentum": "max_momentum", |
| }, |
| { |
| "end_step": self.total_steps - 1, |
| "start_lr": "initial_lr", |
| "end_lr": "min_lr", |
| "start_momentum": "max_momentum", |
| "end_momentum": "max_momentum", |
| }, |
| ] |
| else: |
| self._schedule_phases = [ |
| { |
| "end_step": float(pct_start * self.total_steps) - 1, |
| "start_lr": "initial_lr", |
| "end_lr": "max_lr", |
| "start_momentum": "max_momentum", |
| "end_momentum": "base_momentum", |
| }, |
| { |
| "end_step": self.total_steps - 1, |
| "start_lr": "max_lr", |
| "end_lr": "min_lr", |
| "start_momentum": "base_momentum", |
| "end_momentum": "max_momentum", |
| }, |
| ] |
| |
| # Validate pct_start |
| if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): |
| raise ValueError( |
| f"Expected float between 0 and 1 pct_start, but got {pct_start}" |
| ) |
| |
| # Validate anneal_strategy |
| if anneal_strategy not in ["cos", "linear"]: |
| raise ValueError( |
| f"anneal_strategy must be one of 'cos' or 'linear', instead got {anneal_strategy}" |
| ) |
| else: |
| self._anneal_func_type = anneal_strategy |
| |
| # Initialize learning rate variables |
| max_lrs = _format_param("max_lr", self.optimizer, max_lr) |
| if last_epoch == -1: |
| for idx, group in enumerate(self.optimizer.param_groups): |
| group["initial_lr"] = max_lrs[idx] / div_factor |
| group["max_lr"] = max_lrs[idx] |
| group["min_lr"] = group["initial_lr"] / final_div_factor |
| |
| # Initialize momentum variables |
| self.cycle_momentum = cycle_momentum |
| if self.cycle_momentum: |
| if ( |
| "momentum" not in self.optimizer.defaults |
| and "betas" not in self.optimizer.defaults |
| ): |
| raise ValueError( |
| "optimizer must support momentum or beta1 with `cycle_momentum` option enabled" |
| ) |
| self.use_beta1 = "betas" in self.optimizer.defaults |
| max_momentums = _format_param("max_momentum", optimizer, max_momentum) |
| base_momentums = _format_param("base_momentum", optimizer, base_momentum) |
| if last_epoch == -1: |
| for m_momentum, b_momentum, group in zip( |
| max_momentums, base_momentums, optimizer.param_groups |
| ): |
| if self.use_beta1: |
| group["betas"] = (m_momentum, *group["betas"][1:]) |
| else: |
| group["momentum"] = m_momentum |
| group["max_momentum"] = m_momentum |
| group["base_momentum"] = b_momentum |
| |
| super().__init__(optimizer, last_epoch, verbose) |
| |
| def _anneal_func(self, *args, **kwargs): |
| if hasattr(self, "_anneal_func_type"): |
| if self._anneal_func_type == "cos": |
| return self._annealing_cos(*args, **kwargs) |
| elif self._anneal_func_type == "linear": |
| return self._annealing_linear(*args, **kwargs) |
| else: |
| raise ValueError(f"Unknown _anneal_func_type: {self._anneal_func_type}") |
| else: |
| # For BC |
| return self.anneal_func(*args, **kwargs) # type: ignore[attr-defined] |
| |
| @staticmethod |
| def _annealing_cos(start, end, pct): |
| """Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0.""" |
| cos_out = math.cos(math.pi * pct) + 1 |
| return end + (start - end) / 2.0 * cos_out |
| |
| @staticmethod |
| def _annealing_linear(start, end, pct): |
| """Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0.""" |
| return (end - start) * pct + start |
| |
| def get_lr(self): |
| """Compute the learning rate of each parameter group.""" |
| _warn_get_lr_called_within_step(self) |
| |
| lrs = [] |
| step_num = self.last_epoch |
| |
| if step_num > self.total_steps: |
| raise ValueError( |
| f"Tried to step {step_num} times. The specified number of total steps is {self.total_steps}" # noqa: UP032 |
| ) |
| |
| for group in self.optimizer.param_groups: |
| start_step = 0.0 |
| for i, phase in enumerate(self._schedule_phases): |
| end_step = phase["end_step"] |
| if step_num <= end_step or i == len(self._schedule_phases) - 1: |
| pct = (step_num - start_step) / (end_step - start_step) |
| computed_lr = self._anneal_func( |
| group[phase["start_lr"]], group[phase["end_lr"]], pct |
| ) |
| if self.cycle_momentum: |
| computed_momentum = self._anneal_func( |
| group[phase["start_momentum"]], |
| group[phase["end_momentum"]], |
| pct, |
| ) |
| break |
| start_step = phase["end_step"] |
| |
| lrs.append(computed_lr) # type: ignore[possibly-undefined] |
| if self.cycle_momentum: |
| if self.use_beta1: |
| group["betas"] = (computed_momentum, *group["betas"][1:]) # type: ignore[possibly-undefined] |
| else: |
| group[ |
| "momentum" |
| ] = computed_momentum # type: ignore[possibly-undefined] |
| |
| return lrs |