| import torch |
| from numbers import Number |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import SigmoidTransform |
| from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs |
| |
| |
| class LogitRelaxedBernoulli(Distribution): |
| r""" |
| Creates a LogitRelaxedBernoulli distribution parameterized by `probs` or `logits`, |
| which is the logit of a RelaxedBernoulli distribution. |
| |
| Samples are logits of values in (0, 1). See [1] for more details. |
| |
| Args: |
| temperature (Tensor): |
| probs (Number, Tensor): the probabilty of sampling `1` |
| logits (Number, Tensor): the log-odds of sampling `1` |
| |
| [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables |
| (Maddison et al, 2017) |
| |
| [2] Categorical Reparametrization with Gumbel-Softmax |
| (Jang et al, 2017) |
| """ |
| arg_constraints = {'probs': constraints.unit_interval} |
| support = constraints.real |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| self.temperature = temperature |
| if (probs is None) == (logits is None): |
| raise ValueError("Either `probs` or `logits` must be specified, but not both.") |
| if probs is not None: |
| is_scalar = isinstance(probs, Number) |
| self.probs, = broadcast_all(probs) |
| else: |
| is_scalar = isinstance(logits, Number) |
| self.logits, = broadcast_all(logits) |
| self._param = self.probs if probs is not None else self.logits |
| if is_scalar: |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self._param.size() |
| super(LogitRelaxedBernoulli, self).__init__(batch_shape, validate_args=validate_args) |
| |
| def _new(self, *args, **kwargs): |
| return self._param.new(*args, **kwargs) |
| |
| @lazy_property |
| def logits(self): |
| return probs_to_logits(self.probs, is_binary=True) |
| |
| @lazy_property |
| def probs(self): |
| return logits_to_probs(self.logits, is_binary=True) |
| |
| @property |
| def param_shape(self): |
| return self._param.size() |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| probs = clamp_probs(self.probs.expand(shape)) |
| uniforms = clamp_probs(self.probs.new(shape).uniform_()) |
| return (uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()) / self.temperature |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| logits, value = broadcast_all(self.logits, value) |
| diff = logits - value.mul(self.temperature) |
| return self.temperature.log() + diff - 2 * diff.exp().log1p() |
| |
| |
| class RelaxedBernoulli(TransformedDistribution): |
| r""" |
| Creates a RelaxedBernoulli distribution, parametrized by `temperature`, and either |
| `probs` or `logits`. This is a relaxed version of the `Bernoulli` distribution, so |
| the values are in (0, 1), and has reparametrizable samples. |
| |
| Example:: |
| |
| >>> m = RelaxedBernoulli(torch.tensor([2.2]), |
| torch.tensor([0.1, 0.2, 0.3, 0.99])) |
| >>> m.sample() |
| 0.2951 |
| 0.3442 |
| 0.8918 |
| 0.9021 |
| [torch.FloatTensor of size 4] |
| |
| Args: |
| temperature (Tensor): |
| probs (Number, Tensor): the probabilty of sampling `1` |
| logits (Number, Tensor): the log-odds of sampling `1` |
| """ |
| arg_constraints = {'probs': constraints.unit_interval} |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| super(RelaxedBernoulli, self).__init__(LogitRelaxedBernoulli(temperature, probs, logits), |
| SigmoidTransform(), validate_args=validate_args) |
| |
| @property |
| def temperature(self): |
| return self.base_dist.temperature |
| |
| @property |
| def logits(self): |
| return self.base_dist.logits |
| |
| @property |
| def probs(self): |
| return self.base_dist.probs |