| from numbers import Number |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.exp_family import ExponentialFamily |
| from torch.distributions.utils import broadcast_all |
| |
| |
| class Poisson(ExponentialFamily): |
| r""" |
| Creates a Poisson distribution parameterized by `rate`, the rate parameter. |
| |
| Samples are nonnegative integers, with a pmf given by |
| $rate^k e^{-rate}/k!$ |
| |
| Example:: |
| |
| >>> m = Poisson(torch.tensor([4])) |
| >>> m.sample() |
| 3 |
| [torch.LongTensor of size 1] |
| |
| Args: |
| rate (Number, Tensor): the rate parameter |
| """ |
| arg_constraints = {'rate': constraints.positive} |
| support = constraints.nonnegative_integer |
| |
| @property |
| def mean(self): |
| return self.rate |
| |
| @property |
| def variance(self): |
| return self.rate |
| |
| def __init__(self, rate, validate_args=None): |
| self.rate, = broadcast_all(rate) |
| if isinstance(rate, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.rate.size() |
| super(Poisson, self).__init__(batch_shape, validate_args=validate_args) |
| |
| def sample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| with torch.no_grad(): |
| return torch.poisson(self.rate.expand(shape)) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| rate, value = broadcast_all(self.rate, value) |
| return (rate.log() * value) - rate - (value + 1).lgamma() |
| |
| @property |
| def _natural_params(self): |
| return (torch.log(self.rate), ) |
| |
| def _log_normalizer(self, x): |
| return torch.exp(x) |