blob: 08d08c4c9a50a64bd9554911c1a0df1d6050acb6 [file] [log] [blame]
import torch
import torch.jit
from common_utils import run_tests
from common_quantization import QuantizationTestCase, ModelMultipleOps
class ModelNumerics(QuantizationTestCase):
def test_float_quant_compare(self):
torch.manual_seed(42)
myModel = ModelMultipleOps().to(torch.float32)
myModel.eval()
calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32)
out_ref = myModel(eval_data)
qModel = torch.quantization.QuantWrapper(myModel)
qModel.eval()
qModel.qconfig = torch.quantization.default_qconfig
torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']])
torch.quantization.prepare(qModel)
qModel(calib_data)
torch.quantization.convert(qModel)
out_q = qModel(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired
# output
self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB')
if __name__ == "__main__":
run_tests()