| import torch |
| import torch.jit |
| from common_utils import run_tests |
| from common_quantization import QuantizationTestCase, ModelMultipleOps |
| |
| class ModelNumerics(QuantizationTestCase): |
| def test_float_quant_compare(self): |
| torch.manual_seed(42) |
| myModel = ModelMultipleOps().to(torch.float32) |
| myModel.eval() |
| calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) |
| eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) |
| out_ref = myModel(eval_data) |
| qModel = torch.quantization.QuantWrapper(myModel) |
| qModel.eval() |
| qModel.qconfig = torch.quantization.default_qconfig |
| torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']]) |
| torch.quantization.prepare(qModel) |
| qModel(calib_data) |
| torch.quantization.convert(qModel) |
| out_q = qModel(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) |
| # Quantized model output should be close to floating point model output numerically |
| # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired |
| # output |
| self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB') |
| |
| if __name__ == "__main__": |
| run_tests() |