blob: 1a3b2a68c69c38572964989e541c449b63e895d7 [file] [log] [blame]
#include <c10/cuda/CUDADeviceAssertionHost.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/util/Backtrace.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <cuda_runtime.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <thread>
#define C10_CUDA_CHECK_WO_DSA(EXPR) \
do { \
const cudaError_t __err = EXPR; \
c10::cuda::c10_cuda_check_implementation( \
static_cast<int32_t>(__err), \
__FILE__, \
__func__, /* Line number data type not well-defined between \
compilers, so we perform an explicit cast */ \
static_cast<uint32_t>(__LINE__), \
false); \
} while (0)
namespace c10 {
namespace cuda {
namespace {
#ifdef TORCH_USE_CUDA_DSA
/// Get current device id
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_id() {
int device = -1;
C10_CUDA_CHECK_WO_DSA(c10::cuda::GetDevice(&device));
return device;
}
/// Get a device's compute capability - note that this dangerously assumes
/// that if one CUDA GPU supports device-side assertions they all do. This is
/// probably fine since the latest CUDA GPU that doesn't support UVM is the
/// K80 released 2014-11-17. Mixing that GPU with a newer one is likely to be
/// rare enough that the defensive
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_compute_capability(const int device_num) {
int compute_capability = -1;
C10_CUDA_CHECK_WO_DSA(cudaDeviceGetAttribute(
&compute_capability, cudaDevAttrComputeCapabilityMajor, device_num));
return compute_capability;
}
#endif
/// Get the number of CUDA devices
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_count() {
int device_count = -1;
C10_CUDA_CHECK_WO_DSA(c10::cuda::GetDeviceCount(&device_count));
return device_count;
}
bool dsa_check_if_all_devices_support_managed_memory() {
// It looks as though this'll work best on CUDA GPUs with Pascal
// architectures or newer, per
// https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
#ifdef TORCH_USE_CUDA_DSA
for (const auto i : c10::irange(dsa_get_device_count())) {
if (dsa_get_device_compute_capability(i) < 6) {
return false;
}
}
return true;
#else
return false;
#endif
}
bool env_flag_set(const char* env_var_name) {
const char* const env_string = std::getenv(env_var_name);
return (env_string == nullptr) ? false : std::strcmp(env_string, "0");
}
/// Deleter for UVM/managed memory pointers
void uvm_deleter(DeviceAssertionsData* uvm_assertions_ptr) {
// Ignore error in destructor
if (uvm_assertions_ptr) {
C10_CUDA_IGNORE_ERROR(cudaFree(uvm_assertions_ptr));
}
}
} // namespace
/// Check that kernels ran correctly by checking the message buffer. BLOCKING.
std::string c10_retrieve_device_side_assertion_info() {
#ifdef TORCH_USE_CUDA_DSA
const auto& launch_registry = CUDAKernelLaunchRegistry::get_singleton_ref();
if (!launch_registry.enabled_at_runtime) {
return "Device-side assertion tracking was not enabled by user.";
} else if (!launch_registry.do_all_devices_support_managed_memory) {
return "Device-side assertions disabled because not all devices support managed memory.";
}
// Hack that saves a lot of challenging sync logic.
// The GPU increments the number of errors it's observed and the CPU can see
// that happening immediately which means we can make it here before the GPU
// is done writing information about those errors to memory.
// A short pause gives it time to finish. Since something's gone wrong, this
// pause shouldn't affect perf.
std::this_thread::sleep_for(std::chrono::seconds(1));
// The snapshot causes a brief block. That's okay because this function only
// executes if something's gone wrong such that speed is no longer a priority.
const auto launch_data = launch_registry.snapshot();
const auto& assertion_data = launch_data.first;
const auto& launch_infos = launch_data.second;
std::stringstream oss;
oss << "Looking for device-side assertion failure information...\n";
// Loop over each device that could be managed by the process
for (const auto device_num : c10::irange(assertion_data.size())) {
const auto& assertion_data_for_device = assertion_data.at(device_num);
// Did anything fail?
const auto failures_found = std::min(
assertion_data_for_device.assertion_count,
C10_CUDA_DSA_ASSERTION_COUNT);
if (failures_found == 0) {
continue;
}
// Something failed, let's talk about that
oss << failures_found
<< " CUDA device-side assertion failures were found on GPU #"
<< device_num << "!" << std::endl;
if (assertion_data_for_device.assertion_count >
C10_CUDA_DSA_ASSERTION_COUNT) {
oss << "But at least " << assertion_data_for_device.assertion_count
<< " assertion failures occurred on the device" << std::endl;
oss << "Adjust `C10_CUDA_DSA_ASSERTION_COUNT` if you need more assertion failure info"
<< std::endl;
}
for (const auto i : c10::irange(failures_found)) {
const auto& self = assertion_data_for_device.assertions[i];
const auto& launch_info = launch_infos[self.caller % launch_infos.size()];
oss << "Assertion failure " << i << std::endl;
oss << " GPU assertion failure message = " << self.assertion_msg
<< std::endl;
oss << " File containing assertion = " << self.filename << ":"
<< self.line_number << std::endl;
oss << " Device function containing assertion = " << self.function_name
<< std::endl;
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ","
<< self.thread_id[1] << "," << self.thread_id[2] << "]" << std::endl;
oss << " Block ID that failed assertion = [" << self.block_id[0] << ","
<< self.block_id[1] << "," << self.block_id[2] << "]" << std::endl;
if (launch_info.generation_number == self.caller) {
oss << " File containing kernel launch = "
<< launch_info.launch_filename << ":" << launch_info.launch_linenum
<< std::endl;
oss << " Function containing kernel launch = "
<< launch_info.launch_function << std::endl;
oss << " Name of kernel launched that led to failure = "
<< launch_info.kernel_name << std::endl;
oss << " Device that launched kernel = " << launch_info.device
<< std::endl;
oss << " Stream kernel was launched on = " << launch_info.stream
<< std::endl;
oss << " Backtrace of kernel launch site = ";
if (launch_registry.gather_launch_stacktrace) {
oss << "Launch stacktracing disabled." << std::endl;
} else {
oss << "\n" << launch_info.launch_stacktrace << std::endl;
}
} else {
oss << " CPU launch site info: Unavailable, the circular queue wrapped around. Increase `CUDAKernelLaunchRegistry::max_size`."
<< std::endl;
}
}
}
return oss.str();
#else
return "Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n";
#endif
}
CUDAKernelLaunchRegistry::CUDAKernelLaunchRegistry()
: do_all_devices_support_managed_memory(
dsa_check_if_all_devices_support_managed_memory()),
gather_launch_stacktrace(check_env_for_enable_launch_stacktracing()),
enabled_at_runtime(check_env_for_dsa_enabled()) {
for (C10_UNUSED const auto _ : c10::irange(dsa_get_device_count())) {
uvm_assertions.emplace_back(nullptr, uvm_deleter);
}
kernel_launches.resize(max_kernel_launches);
}
bool CUDAKernelLaunchRegistry::check_env_for_enable_launch_stacktracing()
const {
return env_flag_set("PYTORCH_CUDA_DSA_STACKTRACING");
}
bool CUDAKernelLaunchRegistry::check_env_for_dsa_enabled() const {
return env_flag_set("PYTORCH_USE_CUDA_DSA");
}
uint32_t CUDAKernelLaunchRegistry::insert(
const char* launch_filename,
const char* launch_function,
const uint32_t launch_linenum,
const char* kernel_name,
const int32_t stream_id) {
#ifdef TORCH_USE_CUDA_DSA
if (!enabled_at_runtime) {
return 0;
}
const auto backtrace = gather_launch_stacktrace ? c10::get_backtrace() : "";
const std::lock_guard<std::mutex> lock(read_write_mutex);
const auto my_gen_number = generation_number++;
// TODO: It would probably be good to get a stack trace here so that
// we can better indicate which launch caused the failure.
kernel_launches[my_gen_number % max_kernel_launches] = {
launch_filename,
launch_function,
launch_linenum,
backtrace,
kernel_name,
dsa_get_device_id(),
stream_id,
my_gen_number};
return my_gen_number;
#else
return 0;
#endif
}
std::pair<std::vector<DeviceAssertionsData>, std::vector<CUDAKernelLaunchInfo>>
CUDAKernelLaunchRegistry::snapshot() const {
// This is likely to be the longest-lasting hold on the mutex, but
// we only expect it to be called in cases where we're already failing
// and speed is no longer important
const std::lock_guard<std::mutex> lock(read_write_mutex);
std::vector<DeviceAssertionsData> device_assertions_data;
for (const auto& x : uvm_assertions) {
if (x) {
device_assertions_data.push_back(*x);
} else {
device_assertions_data.emplace_back();
}
}
return std::make_pair(device_assertions_data, kernel_launches);
}
DeviceAssertionsData* CUDAKernelLaunchRegistry::
get_uvm_assertions_ptr_for_current_device() {
#ifdef TORCH_USE_CUDA_DSA
if (!enabled_at_runtime) {
return nullptr;
}
const auto device_num = dsa_get_device_id();
// If we've already set up this GPU with managed memory, return a pointer to
// the managed memory. This is a lock-free quick-return path.
if (uvm_assertions.at(device_num)) {
return uvm_assertions.at(device_num).get();
}
// Need a lock here so there's not race-condition on creating the new device
// assertions buffer
const std::lock_guard<std::mutex> lock(gpu_alloc_mutex);
// If we've already set up this GPU with managed memory, return a pointer to
// the managed memory. This locked path ensures that the device memory is
// allocated only once
if (uvm_assertions.at(device_num)) {
return uvm_assertions.at(device_num).get();
}
// Otherwise, set up the GPU to be able to use the device-side assertion
// system
DeviceAssertionsData* uvm_assertions_ptr = nullptr;
C10_CUDA_CHECK_WO_DSA(
cudaMallocManaged(&uvm_assertions_ptr, sizeof(DeviceAssertionsData)));
C10_CUDA_CHECK_WO_DSA(cudaMemAdvise(
uvm_assertions_ptr,
sizeof(DeviceAssertionsData),
cudaMemAdviseSetPreferredLocation,
cudaCpuDeviceId));
// GPU will establish direct mapping of data in CPU memory, no page faults
// will be generated
C10_CUDA_CHECK_WO_DSA(cudaMemAdvise(
uvm_assertions_ptr,
sizeof(DeviceAssertionsData),
cudaMemAdviseSetAccessedBy,
cudaCpuDeviceId));
// Initialize the memory from the CPU; otherwise, pages may have to be created
// on demand. We think that UVM documentation indicates that first access may
// not honor preferred location, which would be bad, if true, because we want
// this memory on the host so we can access it post-assertion. Initializing
// this on the CPU helps ensure that that's where the memory will live.
*uvm_assertions_ptr = DeviceAssertionsData();
// Ownership and lifetime management of `uvm_assertions_ptr` now passes to the
// uvm_assertions unique_ptr vector
uvm_assertions.at(device_num).reset(uvm_assertions_ptr);
return uvm_assertions_ptr;
#else
return nullptr;
#endif
}
CUDAKernelLaunchRegistry& CUDAKernelLaunchRegistry::get_singleton_ref() {
static CUDAKernelLaunchRegistry launch_registry;
return launch_registry;
}
bool CUDAKernelLaunchRegistry::has_failed() const {
for (const auto& x : uvm_assertions) {
if (x && x->assertion_count > 0) {
return true;
}
}
return false;
}
} // namespace cuda
} // namespace c10